Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Geburtshelfer und Wegweiser für Photonen

07.12.2017

Gezielt Photonen erzeugen und ihren Weg kontrollieren: Das sollte mit einem neuen Design gelingen, das Würzburger Physiker für optische Antennen erarbeitet haben.

Atome und Moleküle können dazu gebracht werden, Lichtteilchen (Photonen) auszusenden. Dieser Vorgang verläuft aber ohne äußeren Eingriff ineffizient und ungerichtet. Wenn es möglich wäre, auf fundamentale Weise in diesen Prozess der Photonenentstehung in Hinblick auf Effizienz und Emissionsrichtung einzugreifen, ergäben sich neue technische Möglichkeiten:


Aufriss einer optimierten optischen Antenne: Innen liegt ein Hohlraum; die elektrischen Felder während des Betriebes sind durch die Farbskala kodiert. Strommuster sind durch grüne Pfeile dargestellt.

Bild: Thorsten Feichtner

Winzige multifunktionale Leuchtpixel, mit denen man dreidimensionale Displays bauen könnte, würden damit ebenso ermöglicht wie zuverlässige Einzelphotonenquellen für Quantencomputer oder optische Mikroskope zur Abbildung einzelner Moleküle.

Ein bekannter Lösungsansatz sind nanometergroße „optische Antennen“, die Photonen sehr effizient und ausschließlich in eine bestimmte Richtung versenden. Die erste Idee hierzu stammt aus einer Rede, die der Nobelpreisträger Richard P. Feynman 1959 am California Institute of Technology hielt.

Feynman war damit seiner Zeit weit voraus, aber er stieß eine rasante Entwicklung der Nanotechnologie an, die es heute tatsächlich ermöglicht, Antennen für sichtbares Licht zu bauen. Die Abmessungen und Strukturdetails solcher Antennen lassen sich in einer Größenordnung um 250 Nanometer präzise kontrollieren.

Woran es bisherigen Licht-Antennen mangelt

Die Form dieser optischen Antennen hat sich bisher an den etablierten Vorbildern aus Mobilfunk und Radiowellentechnik orientiert. Dort bestehen Antennen, aufgrund der verwendeten Wellenlängen im Zentimeter-Bereich, meist aus speziell geformten Metalldrähten und Anordnungen von Metallstäben.

Tatsächlich kann man durch den Übergang zu winzigen, nur noch nanometergroßen metallischen Stäbchen Antennen für Lichtwellen konstruieren und damit die Erzeugung von Photonen und ihre Ausbreitung beeinflussen – aber die Analogie zwischen Radio- und Lichtwellen ist nur eingeschränkt gültig.

Während bei makroskopischen Radioantennen ein Hochfrequenzgenerator über ein Kabel an die Antenne gekoppelt wird, muss dieser Kopplungsprozess auf der Nanometer-Skala einer Lichtwellenlänge berührungslos verlaufen. Atome und Moleküle, die als Photonenquellen fungieren, verfügen aber nicht über Anschlusskabel, mit denen man eine optische Antenne verbinden kann.

Neben weiteren Problemen, die auf die hohe Frequenz von Licht zurückzuführen sind, hat dieser wichtige Unterschied es bisher unmöglich gemacht, den Geburtsprozess und anschließenden Lebensweg von Photonen mit optischen Antennen in zufriedenstellendem Maße zu kontrollieren.

Publikation im Fachmagazin „Physical Review Letters“

Physiker der Julius-Maximilians-Universität Würzburg (JMU) haben dieses Problem nun gelöst und Regeln für optimierte optische Antennen formuliert, die im renommierten Fachmagazin „Physical Review Letters“ veröffentlicht wurden.

Mit den neuen Regeln könnten – zumindest auf Papier – Antennen für Licht so gebaut werden, dass sich sowohl der Geburtsprozess als auch die weitere Ausbreitung der Photonen genau kontrollieren lasse, sagt Dr. Thorsten Feichtner, der am Physikalischen Institut in der Arbeitsgruppe von Professor Bert Hecht forscht.

Auf welchem Prinzip die neuen Antennen beruhen

„Die Idee dahinter beruht auf dem Prinzip der Ähnlichkeit“, so der Würzburger Physiker. „Die Neuerung in unserer Arbeit ist, dass die Ströme der frei beweglichen Elektronen in der Antenne zwei Ähnlichkeits-Bedingungen gleichzeitig erfüllen müssen. Einerseits muss das Strommuster in der Antenne den Feldlinien in unmittelbarer Nähe eines licht-emittierenden Atoms oder Moleküls ähneln. Andererseits muss das Strommuster aber ebenso bestmöglich mit dem homogenen elektrischen Feld einer ebenen Welle übereinstimmen, damit möglichst jedes Photon zu einem weit entfernt liegenden Empfänger gelangen kann.“

Die mit Hilfe dieser neuen Regeln gefundenen neuartigen Antennen für Licht extrahieren aus einem Emitter weit mehr Photonen als die bislang bekannten Antennenformen, die sich aus der Radiotechnik ableiten.

Feichtner, T., Christiansen, S., & Hecht, B. (2017). Mode Matching for Optical Antennas. Physical Review Letters, 119(21), 217401, 21. November 2017, DOI: https://doi.org/10.1103/PhysRevLett.119.217401

Kontakt

Dr. Thorsten Feichtner, Physikalisches Institut der Universität Würzburg, T +49 931 31-85768, thorsten.feichtner@physik.uni-wuerzburg.de

Robert Emmerich | Julius-Maximilians-Universität Würzburg
Weitere Informationen:
http://www.uni-wuerzburg.de

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Neue Speziallinsen ermöglichen Röntgenmikroskopie mit Rekordauflösung
07.12.2017 | Deutsches Elektronen-Synchrotron DESY

nachricht Regulierung der Helligkeit bei Bildaufnahmen: Forscher entwickeln elektrischen Verlaufsfilter
07.12.2017 | Technische Universität Kaiserslautern

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Realer Versuch statt virtuellem Experiment: Erfolgreiche Prüfung von Nanodrähten

Mit neuartigen Experimenten enträtseln Forscher des Helmholtz-Zentrums Geesthacht und der Technischen Universität Hamburg, warum winzige Metallstrukturen extrem fest sind

Ultraleichte und zugleich extrem feste Werkstoffe – poröse Nanomaterialien aus Metall versprechen hochinteressante Anwendungen unter anderem für künftige...

Im Focus: Geburtshelfer und Wegweiser für Photonen

Gezielt Photonen erzeugen und ihren Weg kontrollieren: Das sollte mit einem neuen Design gelingen, das Würzburger Physiker für optische Antennen erarbeitet haben.

Atome und Moleküle können dazu gebracht werden, Lichtteilchen (Photonen) auszusenden. Dieser Vorgang verläuft aber ohne äußeren Eingriff ineffizient und...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

Im Focus: Auf dem Weg zum Nano-Datenspeicher

Die Miniaturisierung der bisher in Speichermedien verwendeten Technologie stößt mittlerweile auf fundamentale quantenmechanische Grenzen. Ein neuer Ansatz besteht darin, sogenannte Spin-Crossover-Moleküle als kleinste Speichereinheit zu verwenden. Ähnlich wie in herkömmlichen Festplatten können sie Informationen über ihren magnetischen Zustand speichern. Einem Forschungsteam der Universität Kiel ist es nun gelungen, solche Moleküle erfolgreich auf einer Oberfläche anzubringen und ihre Speicherkapazität zu verbessern. Die Speicherdichte herkömmlicher Festplatten ließe sich damit theoretisch um mehr als das Hundertfache erhöhen. Die Studie erschien in der Zeitschrift Nano Letters.

Speichermedien sind in den letzten Jahren kontinuierlich kleiner geworden und erlauben, mehr Daten auf gleichem Raum zu speichern. Doch die Miniaturisierung...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Hohe Heilungschancen bei Lymphomen im Kindesalter

07.12.2017 | Veranstaltungen

Der Roboter im Pflegeheim – bald Wirklichkeit?

05.12.2017 | Veranstaltungen

Forscher diskutieren über Demenz bei Kindern und Erwachsenen

05.12.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Das fernste Schwarze Loch im Kosmos: Quasar in Entfernung von 13 Milliarden Lichtjahren entdeckt

07.12.2017 | Physik Astronomie

DNA-Origami: Aufbau von Strukturen in Virengröße und Kostensenkung durch Massenproduktion

07.12.2017 | Biowissenschaften Chemie

Neue Speziallinsen ermöglichen Röntgenmikroskopie mit Rekordauflösung

07.12.2017 | Physik Astronomie