Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Geburtshelfer und Wegweiser für Photonen

07.12.2017

Gezielt Photonen erzeugen und ihren Weg kontrollieren: Das sollte mit einem neuen Design gelingen, das Würzburger Physiker für optische Antennen erarbeitet haben.

Atome und Moleküle können dazu gebracht werden, Lichtteilchen (Photonen) auszusenden. Dieser Vorgang verläuft aber ohne äußeren Eingriff ineffizient und ungerichtet. Wenn es möglich wäre, auf fundamentale Weise in diesen Prozess der Photonenentstehung in Hinblick auf Effizienz und Emissionsrichtung einzugreifen, ergäben sich neue technische Möglichkeiten:


Aufriss einer optimierten optischen Antenne: Innen liegt ein Hohlraum; die elektrischen Felder während des Betriebes sind durch die Farbskala kodiert. Strommuster sind durch grüne Pfeile dargestellt.

Bild: Thorsten Feichtner

Winzige multifunktionale Leuchtpixel, mit denen man dreidimensionale Displays bauen könnte, würden damit ebenso ermöglicht wie zuverlässige Einzelphotonenquellen für Quantencomputer oder optische Mikroskope zur Abbildung einzelner Moleküle.

Ein bekannter Lösungsansatz sind nanometergroße „optische Antennen“, die Photonen sehr effizient und ausschließlich in eine bestimmte Richtung versenden. Die erste Idee hierzu stammt aus einer Rede, die der Nobelpreisträger Richard P. Feynman 1959 am California Institute of Technology hielt.

Feynman war damit seiner Zeit weit voraus, aber er stieß eine rasante Entwicklung der Nanotechnologie an, die es heute tatsächlich ermöglicht, Antennen für sichtbares Licht zu bauen. Die Abmessungen und Strukturdetails solcher Antennen lassen sich in einer Größenordnung um 250 Nanometer präzise kontrollieren.

Woran es bisherigen Licht-Antennen mangelt

Die Form dieser optischen Antennen hat sich bisher an den etablierten Vorbildern aus Mobilfunk und Radiowellentechnik orientiert. Dort bestehen Antennen, aufgrund der verwendeten Wellenlängen im Zentimeter-Bereich, meist aus speziell geformten Metalldrähten und Anordnungen von Metallstäben.

Tatsächlich kann man durch den Übergang zu winzigen, nur noch nanometergroßen metallischen Stäbchen Antennen für Lichtwellen konstruieren und damit die Erzeugung von Photonen und ihre Ausbreitung beeinflussen – aber die Analogie zwischen Radio- und Lichtwellen ist nur eingeschränkt gültig.

Während bei makroskopischen Radioantennen ein Hochfrequenzgenerator über ein Kabel an die Antenne gekoppelt wird, muss dieser Kopplungsprozess auf der Nanometer-Skala einer Lichtwellenlänge berührungslos verlaufen. Atome und Moleküle, die als Photonenquellen fungieren, verfügen aber nicht über Anschlusskabel, mit denen man eine optische Antenne verbinden kann.

Neben weiteren Problemen, die auf die hohe Frequenz von Licht zurückzuführen sind, hat dieser wichtige Unterschied es bisher unmöglich gemacht, den Geburtsprozess und anschließenden Lebensweg von Photonen mit optischen Antennen in zufriedenstellendem Maße zu kontrollieren.

Publikation im Fachmagazin „Physical Review Letters“

Physiker der Julius-Maximilians-Universität Würzburg (JMU) haben dieses Problem nun gelöst und Regeln für optimierte optische Antennen formuliert, die im renommierten Fachmagazin „Physical Review Letters“ veröffentlicht wurden.

Mit den neuen Regeln könnten – zumindest auf Papier – Antennen für Licht so gebaut werden, dass sich sowohl der Geburtsprozess als auch die weitere Ausbreitung der Photonen genau kontrollieren lasse, sagt Dr. Thorsten Feichtner, der am Physikalischen Institut in der Arbeitsgruppe von Professor Bert Hecht forscht.

Auf welchem Prinzip die neuen Antennen beruhen

„Die Idee dahinter beruht auf dem Prinzip der Ähnlichkeit“, so der Würzburger Physiker. „Die Neuerung in unserer Arbeit ist, dass die Ströme der frei beweglichen Elektronen in der Antenne zwei Ähnlichkeits-Bedingungen gleichzeitig erfüllen müssen. Einerseits muss das Strommuster in der Antenne den Feldlinien in unmittelbarer Nähe eines licht-emittierenden Atoms oder Moleküls ähneln. Andererseits muss das Strommuster aber ebenso bestmöglich mit dem homogenen elektrischen Feld einer ebenen Welle übereinstimmen, damit möglichst jedes Photon zu einem weit entfernt liegenden Empfänger gelangen kann.“

Die mit Hilfe dieser neuen Regeln gefundenen neuartigen Antennen für Licht extrahieren aus einem Emitter weit mehr Photonen als die bislang bekannten Antennenformen, die sich aus der Radiotechnik ableiten.

Feichtner, T., Christiansen, S., & Hecht, B. (2017). Mode Matching for Optical Antennas. Physical Review Letters, 119(21), 217401, 21. November 2017, DOI: https://doi.org/10.1103/PhysRevLett.119.217401

Kontakt

Dr. Thorsten Feichtner, Physikalisches Institut der Universität Würzburg, T +49 931 31-85768, thorsten.feichtner@physik.uni-wuerzburg.de

Robert Emmerich | Julius-Maximilians-Universität Würzburg
Weitere Informationen:
http://www.uni-wuerzburg.de

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Highlight der Halbleiter-Forschung
20.02.2018 | Technische Universität Chemnitz

nachricht Beobachtung und Kontrolle ultraschneller Prozesse mit Attosekunden-Auflösung
20.02.2018 | Technische Universität München

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Die Brücke, die sich dehnen kann

Brücken verformen sich, daher baut man normalerweise Dehnfugen ein. An der TU Wien wurde eine Technik entwickelt, die ohne Fugen auskommt und dadurch viel Geld und Aufwand spart.

Wer im Auto mit flottem Tempo über eine Brücke fährt, spürt es sofort: Meist rumpelt man am Anfang und am Ende der Brücke über eine Dehnfuge, die dort...

Im Focus: Eine Frage der Dynamik

Die meisten Ionenkanäle lassen nur eine ganz bestimmte Sorte von Ionen passieren, zum Beispiel Natrium- oder Kaliumionen. Daneben gibt es jedoch eine Reihe von Kanälen, die für beide Ionensorten durchlässig sind. Wie den Eiweißmolekülen das gelingt, hat jetzt ein Team um die Wissenschaftlerin Han Sun (FMP) und die Arbeitsgruppe von Adam Lange (FMP) herausgefunden. Solche nicht-selektiven Kanäle besäßen anders als die selektiven eine dynamische Struktur ihres Selektivitätsfilters, berichten die FMP-Forscher im Fachblatt Nature Communications. Dieser Filter könne zwei unterschiedliche Formen ausbilden, die jeweils nur eine der beiden Ionensorten passieren lassen.

Ionenkanäle sind für den Organismus von herausragender Bedeutung. Wenn zum Beispiel Sinnesreize wahrgenommen, ans Gehirn weitergeleitet und dort verarbeitet...

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Erste integrierte Schaltkreise (IC) aus Plastik

Erstmals ist es einem Forscherteam am Max-Planck-Institut (MPI) für Polymerforschung in Mainz gelungen, einen integrierten Schaltkreis (IC) aus einer monomolekularen Schicht eines Halbleiterpolymers herzustellen. Dies erfolgte in einem sogenannten Bottom-Up-Ansatz durch einen selbstanordnenden Aufbau.

In diesem selbstanordnenden Aufbauprozess ordnen sich die Halbleiterpolymere als geordnete monomolekulare Schicht in einem Transistor an. Transistoren sind...

Im Focus: Quantenbits per Licht übertragen

Physiker aus Princeton, Konstanz und Maryland koppeln Quantenbits und Licht

Der Quantencomputer rückt näher: Neue Forschungsergebnisse zeigen das Potenzial von Licht als Medium, um Informationen zwischen sogenannten Quantenbits...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Digitalisierung auf dem Prüfstand: Hochkarätige Konferenz zu Empowerment in der agilen Arbeitswelt

20.02.2018 | Veranstaltungen

Aachener Optiktage: Expertenwissen in zwei Konferenzen für die Glas- und Kunststoffoptikfertigung

19.02.2018 | Veranstaltungen

Konferenz "Die Mobilität von morgen gestalten"

19.02.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Highlight der Halbleiter-Forschung

20.02.2018 | Physik Astronomie

Wie verbessert man die Nahtqualität lasergeschweißter Textilien?

20.02.2018 | Materialwissenschaften

Der Bluthochdruckschalter in der Nebenniere

20.02.2018 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics