Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Gaswolke im galaktischen Zentrum ist Teil eines größeren Gasflusses

24.11.2014

Im November präsentierten Astronomen des Max-Planck-Instituts für extraterrestrische Physik neue Beobachtungen der Gaswolke G2 im galaktischen Zentrum, die ursprünglich 2011 entdeckt worden war. Diese Daten stimmen bemerkenswert gut mit einer fortlaufenden Störung durch Gezeitenkräfte überein.

Völlig überraschend kam allerdings die Entdeckung, dass die Umlaufbahn der Gaswolke G2 derjenigen einer anderen Gaswolke entspricht, die bereits vor etwa zehn Jahren beobachtet wurde. Die könnte darauf hindeuten, dass G2 in der Tat Teil eines viel umfangreicheren Gasflusses ist. Dies würde auch zu einigen der Szenarien passen, die vorgeschlagen wurden um die Anwesenheit von G2 zu erklären, wie zum Beispiel ein Modell, bei dem G2 vom Wind eines massereichen Sterns stammt.


April 2014: Hochauflösendes Bild der Gaswolke G2 im Zentrum unserer Milchstraße, aufgenommen mit dem SINFONI-Instrument am VLT. Der rote Teil der Wolke nähert sich dem 4 Millionen Sonnenmassen schweren Schwarzen Loch (Kreuz) mit einer Geschwindigkeit von einigen tausend km/s. Der blaue Teil hat bereits den kürzesten Abstand zum Schwarzen Loch passiert und entfernt sich wieder davon. Die ursprünglich sphärische Gaswolke wurde durch das starke Gravitationsfeld des Schwarzen Lochs um einen Faktor 50 in ihrer Bewegungsrichtung gestreckt. Ihre Größe (vom roten bis zum blauen Teil der Wolke) entspricht nun dem 900-fachen der Entfernung Erde-Sonne. Die durchgezogene Linie zeigt die Umlaufbahn der Gaswolke. Die gestrichelte Linie zeigt den Orbit des Sterns (S2), der bisher am besten vermessen wurde. Die Positionen der benachbarten Sterne sind ebenfalls markiert.

© MPE


Hochaufgelöste Aufnahmen mit dem SINFONI-Instrument am VLT vom Zentrum unserer Milchstraße. Die beiden Gaswolken G1 und G2 sind blau bzw. rot eingefärbt. Die gestrichelten Linien zeigen den Orbit des Sterns (S2), der bisher am besten vermessen wurde, sowie den gemeinsamen Orbit der beiden Gaswolken, der den Daten am besten entspricht. Das Kreuz markiert die Position des Schwarzen Lochs mit 4 Millionen Sonnenmassen im galaktischen Zentrum.

© MPE

Die Gaswolke G2 wurde ursprünglich 2011 von Stefan Gillessen und seinen Kollegen am Max-Planck-Institut für extraterrestrische Physik (MPE) entdeckt. Sie beschreibt eine stark exzentrische Umlaufbahn um das galaktische Zentrum und Beobachtungen im Jahr 2013 haben gezeigt, dass ein Teil der Gaswolke seine größte Annäherung an das Schwarze Loch - in einer Entfernung von etwa 20 Lichtstunden (etwas mehr als 20 Milliarden Kilometer oder 2000 Schwarzschild-Radien) - bereits hinter sich hat.

Die neuen, tiefen Infrarotbeobachtungen mit dem Instrument SINFONI am VLT zeigen die fortlaufenden Störungen der Gaswolke durch Gezeitenkräfte ausgelöst von dem starken Gravitationsfeld. Während Form und Pfad der Gaswolke gut mit den Vorhersagen aus den Modellen übereinstimmen, gab es bisher keine signifikant erhöhte Emission bei hohen Energien, wie man aufgrund der damit verbundenen Stoßfront erwartet hatte.

Ein genauerer Blick auf die Daten führte nun zu einer Überraschung: "Bereits vor zehn Jahren haben wir eine weitere Gaswolke – jetzt bezeichnen wir sie als G1 - in der Zentralregion unserer Galaxie beobachtet", erklärt Stefan Gillessen. "Wir untersuchten den Zusammenhang zwischen G1 und G2 und finden eine erstaunliche Ähnlichkeit der beiden Bahnen."

Das schwache und verschwommene Objekt G1 taucht in den Daten von 2004 bis 2008 auf und das MPE-Team war in der Lage, auch die Bahn von G1 zu bestimmen. Dabei zeigte sich, dass G1 das Perizentrum bereits 2001 passierte. Die Ähnlichkeit der Umlaufbahnen legt somit nahe, dass G1 der Gaswolke G2 etwa 13 Jahre voraus ist.

Die Wissenschaftler speisten diese Informationen in ein Modell für eine kombinierte Bahn ein, wobei sie zum einen die verschiedenen Perizentrum-Zeiten berücksichtigten und zum anderen kleine Abweichungen für leicht unterschiedliche Bahnen erlaubten, aufgrund der Wechselwirkung des Gases mit dem Umgebungsmedium.

"Unsere Grundidee ist, dass G1 und G2 Klumpen desselben Gasflusses sein könnten", erklärt Oliver Pfuhl, Hauptautor der Studie, die kürzlich veröffentlicht wurde. "In diesem Fall sollten wir in der Lage sein, gleichzeitig beide Datensätze anzupassen. Und in der Tat: unser Modell beschreibt die G1- und G2-Orbits bemerkenswert genau."

Das Modell macht die einfache Annahme, dass G1 während des Perizentrumsdurchganges abgebremst wurde durch die Widerstandskraft der dünnen Atmosphäre, die das massereiche Schwarze Loch umgibt. Dieses Abbremsen brachte G1 auf eine Kreisbahn. Allein mit dieser sehr einfachen Annahme ergibt sich, dass die leuchtenden G1- und G2-Wolken offenbar der gleichen Umlaufbahn folgen. Kleine Abweichungen sind dabei nicht überraschend angesichts des sehr einfachen Modells, das wahrscheinlich einige wesentliche physikalische Prozesse vernachlässigt.

"Die gute Übereinstimmung des Modells mit den Daten macht es höchst wahrscheinlich, dass G1 und G2 Teil des gleichen Gasflusses sind", sagt Gillessen. Eine mögliche Quelle für sowohl G1 als auch G2 könnten dann Klumpen im Wind eines der massereichen Sterne in der galaktischen Scheibe sein, der vor rund 100 Jahren in der Nähe des Apozentrums des G2-Orbit ausgestossen wurde.

Eine andere mögliche Erklärung, die vor kurzem vorgeschlagen wurde, ist ein großer Stern, der von einer ausgedehnten Gaswolke umgeben ist. Die aktuellen VLT-Daten machen ein derartiges Modell allerdings unwahrscheinlich.

Darüber hinaus könnte das Szenario des Gasflusses auch die fehlende Röntgenemission der Gaswolke in der Nähe des Schwarzen Lochs erklären; dass eine derartige Emission nicht beobachtet wurde, ist jedoch noch nicht verstanden.

Kontakt:
Oliver Pfuhl
Max-Planck-Institut für extraterrestrische Physik
Tel: +49 (0)89 30000-3852
Email: pfuhl@mpe.mpg.de

Stefan Gillessen
Max-Planck-Institut für extraterrestrische Physik
Tel: +49 (0)89 30000-3839
Email: ste@mpe.mpg.de

Originalveröffentlichung:
The Galactic Center cloud G2 and its gas streamer
Oliver Pfuhl, Stefan Gillessen et al.
Accepted for publication in ApJ
http://arxiv.org/abs/1407.4354


Webseite: http://www.mpe.mpg.de/6245919/News_20141110

Dr. Hannelore Hämmerle
Presse- und Öffentlichkeitsarbeit
MPI für Astrophysik
MPI für extraterrestrische Physik
Karl-Schwarzschildstr. 1
85748 Garching
+49 (89) 30 000 3980
hhaemmerle@mpa-garching.mpg.de

Dr. Hannelore Hämmerle | Max-Planck-Institut
Weitere Informationen:
http://www.mpe.mpg.de/

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht CAST-Projekt setzt Dunkler Materie neue Grenzen
23.05.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht Heiße Materialien: Fachartikel zum pyroelektrischen Koeffizienten
23.05.2017 | Technische Universität Bergakademie Freiberg

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Tumult im trägen Elektronen-Dasein

Ein internationales Team von Physikern hat erstmals das Streuverhalten von Elektronen in einem nichtleitenden Material direkt beobachtet. Ihre Erkenntnisse könnten der Strahlungsmedizin zu Gute kommen.

Elektronen in nichtleitenden Materialien könnte man Trägheit nachsagen. In der Regel bleiben sie an ihren Plätzen, tief im Inneren eines solchen Atomverbunds....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Hauchdünne magnetische Materialien für zukünftige Quantentechnologien entwickelt

Zweidimensionale magnetische Strukturen gelten als vielversprechendes Material für neuartige Datenspeicher, da sich die magnetischen Eigenschaften einzelner Molekülen untersuchen und verändern lassen. Forscher haben nun erstmals einen hauchdünnen Ferrimagneten hergestellt, bei dem sich Moleküle mit verschiedenen magnetischen Zentren auf einer Goldfläche selbst zu einem Schachbrettmuster anordnen. Dies berichten Wissenschaftler des Swiss Nanoscience Institutes der Universität Basel und des Paul Scherrer Institutes in der Wissenschaftszeitschrift «Nature Communications».

Ferrimagneten besitzen zwei magnetische Zentren, deren Magnetismus verschieden stark ist und in entgegengesetzte Richtungen zeigt. Zweidimensionale, quasi...

Im Focus: Neuer Ionisationsweg in molekularem Wasserstoff identifiziert

„Wackelndes“ Molekül schüttelt Elektron ab

Wie reagiert molekularer Wasserstoff auf Beschuss mit intensiven ultrakurzen Laserpulsen? Forscher am Heidelberger MPI für Kernphysik haben neben bekannten...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Diabetes Kongress 2017:„Closed Loop“-Systeme als künstliche Bauchspeicheldrüse ab 2018 Realität

23.05.2017 | Veranstaltungen

Aachener Werkzeugmaschinen-Kolloquium 2017: Internet of Production für agile Unternehmen

23.05.2017 | Veranstaltungen

14. Dortmunder MST-Konferenz zeigt individualisierte Gesundheitslösungen mit Mikro- und Nanotechnik

22.05.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Medikamente aus der CLOUD: Neuer Standard für die Suche nach Wirkstoffkombinationen

23.05.2017 | Biowissenschaften Chemie

Diabetes Kongress 2017:„Closed Loop“-Systeme als künstliche Bauchspeicheldrüse ab 2018 Realität

23.05.2017 | Veranstaltungsnachrichten

CAST-Projekt setzt Dunkler Materie neue Grenzen

23.05.2017 | Physik Astronomie