Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Gas-Variationen weisen auf Jahreszeiten auf Komet Chury hin

23.01.2015

Der Komet 67P/Churyumov-Gerasimenko gibt weitere Geheimnisse preis: Wie Berner Forschende herausgefunden haben, variiert der Gas-Ausstoss des Kometen beträchtlich. Dies könnte der Hinweis auf eine Art Jahreszeitenwechsel sein. Derweil enthüllt die Kamera OSIRIS an Bord der Kometensonde Rosetta neue Details über die Oberfläche «Churys».

In der aktuellen Ausgabe des Magazins «Science» ist ein Teil den neuen Resultaten der europäischen Rosetta-Mission zum Kometen 67P/Churyumov-Gerasimenko gewidmet. Drei der acht Artikel zum Thema werden von Berner Forscherinnen und Forschern angeführt, bei zwei weiteren sind Berner Co-Autoren beteiligt. «Das zeigt, welche grosse Rolle die Universität Bern bei dieser Mission und in der Kometenforschung spielt», sagt Kathrin Altwegg vom Berner Center for Space and Habitability und eine der Hauptbeteiligten der ESA-Mission.


Farbkomposit eines Teils von 67P. Am Boden unterhalb der Felswand ist Material sichtbar, das heller und blauer ist als die Umgebung. Dabei könnte es sich um Blöcke (blauen) Wassereises handeln.

ESA/Rosetta/MPS for OSIRIS Team MPS/UPD/LAM/IAA/SSO/INTA/UPM/DASP/IDA

Unterschiedliche «Sommer- und Winter-Atmosphäre»

In einer der Studien untersucht Myrtha Hässig, eine ehemalige Doktorandin Altweggs und zur Zeit PostDoc am Southwest Research Institute (SwRI) in San Antonio, USA, die Variation der Koma, also quasi der Kometenatmosphäre. «Hätten wir einfach eine ständige Zunahme der Ausgasrate beim Kometen festgestellt, gäbe es keine Fragen bezüglich dessen Heterogenität», sagt sie.

«Stattdessen sahen wir Spitzen bei der Messung der Wasserdichte und ein paar Stunden später beim Kohlendioxyd.» Diese Variation könnte laut Hässig auf einen Tag-Nacht- oder auf einen saisonalen «Sommer-Winter»-Effekt hindeuten. Möglicherweise sei der Kometenkern selbst inhomogen. In diesem Fall würde das Material aus verschiedenen Regionen des frühen Sonnensystems bestehen und sich vermischt haben.

«Mit einem Teleskop betrachtet, sehen Kometenkomata von weitem sehr uniform aus, und sie ändern sich auch nicht kurzfristig», sagt Co-Autor Stephen Fuselier vom SwRI. «Wir waren wirklich überrascht, als wir aus 200 Kilometern Entfernung diese Variationen sahen. Noch überraschender war, dass sich die Zusammensetzung der Koma so stark ändert.» Es gibt demnach einen klaren Unterschied zwischen der Zusammensetzung der «Sommer-» und der «Winteratmosphäre»: Erstere wird von Wasser; letztere von Kohlendioxyd dominiert.

Da der Kometenkern mit einem Durchmesser von 4 Kilometern sehr klein ist, ist die Sommerzone nur rund einen Kilometer von der Winterzone entfernt. Kathrin Altwegg: «Derart grosse Differenzen in der Atmosphäre auf solch kleine Entfernungen zu sehen, ist aussergewöhnlich. Wir müssen nun beobachten, wie sich der Komet entwickelt, wenn er sich der Sonne nähert, um festzustellen, ob die Änderungen der Koma nur durch Temperaturdifferenzen zu Stande kommen oder ob der Kern selbst inhomogen ist.»

Gestochen scharfe Oberflächenbilder dank OSIRIS

Unter der Federführung von Nicolas Thomas vom Physikalischen Institut der Universität Bern beschäftigt sich ein weiteres Paper mit den Bildern, die Rosettas Hauptkamerasystem OSIRIS vom Kometenkern geschossen hat. Die Struktur des Kometen sei sehr divers, so der Berner Weltraumforscher. «Teile der Oberfläche erscheinen hart und weisen Bruchflächen auf, andere scheinen zu zerbröckeln. Weitere Teile sind von Staub bedeckt, dessen Verteilung vom ausströmenden Gas verändert wird. Es ist ein erstaunlicher Ort.»

Das Berner Fernerkundungsteam kann auch auf Ressourcen zurück greifen, die kürzlich durch das National Center for Competence in Research (NCCR PlanetS) bereitgestellt wurden, um die Interpretation der Daten zu ermöglichen. «Die Schweizer Unterstützung der Planetenwissenschaften ist enorm», sagt Thomas, «und sie hat dazu geführt, dass die Universität Bern bei der Planetenforschung mit in der ersten Reihe steht.»

Wechselwirkung von Sonnenwind und Koma untersucht

Last but not least beteiligt sich auch Martin Rubin vom Physikalischen Institut als Co-Autor an einer Studie von Hans Nilsson vom Schwedischen Institut für Weltraumforschung über die Magnetosphäre von «Chury». Die Universität Bern hat dazu Daten des Gasdrucksensors ROSINA COPS beigesteuert. Erstmals konnten damit auf dieser grossen Entfernung von der Sonne die Wechselwirkung des Sonnenwindes mit der Kometenkoma untersucht werden.

Das vom Kometen ausströmende Gas wird im Sonnenlicht elektrisch geladen und dann vom Sonnenwind weggetragen. Wegen der grossen Entfernung zur Sonne ist dieser Effekt bei Chury laut Rubin weit weniger ausgeprägt als bei Kometen, welche man bisher mit Sonden besucht hat. «Für einen Plasma-Forscher wie mich ist es äusserst interessant, diese Wechselwirkung während ihrer Entstehung zu beobachten. Viele Fragestellungen in der Kometenforschung benötigen zur Erklärung die Zusammenarbeit verschiedener Teams sowie gemeinsame Messungen von verschiedenen Instrumenten.»

Weitere Informationen:

http://www.kommunikation.unibe.ch/content/medien/medienmitteilungen/index_ger.ht...

Nathalie Matter | Universität Bern

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Ruckartige Bewegung schärft Röntgenpulse
28.07.2017 | Max-Planck-Institut für Kernphysik

nachricht Drei Generationen an Sternen unter einem Dach
27.07.2017 | ESO Science Outreach Network - Haus der Astronomie

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Ruckartige Bewegung schärft Röntgenpulse

Spektral breite Röntgenpulse lassen sich rein mechanisch „zuspitzen“. Das klingt überraschend, aber ein Team aus theoretischen und Experimentalphysikern hat dafür eine Methode entwickelt und realisiert. Sie verwendet präzise mit den Pulsen synchronisierte schnelle Bewegungen einer mit dem Röntgenlicht wechselwirkenden Probe. Dadurch gelingt es, Photonen innerhalb des Röntgenpulses so zu verschieben, dass sich diese im gewünschten Bereich konzentrieren.

Wie macht man aus einem flachen Hügel einen steilen und hohen Berg? Man gräbt an den Seiten Material ab und schüttet es oben auf. So etwa kann man sich die...

Im Focus: Abrupt motion sharpens x-ray pulses

Spectrally narrow x-ray pulses may be “sharpened” by purely mechanical means. This sounds surprisingly, but a team of theoretical and experimental physicists developed and realized such a method. It is based on fast motions, precisely synchronized with the pulses, of a target interacting with the x-ray light. Thereby, photons are redistributed within the x-ray pulse to the desired spectral region.

A team of theoretical physicists from the MPI for Nuclear Physics (MPIK) in Heidelberg has developed a novel method to intensify the spectrally broad x-ray...

Im Focus: Physiker designen ultrascharfe Pulse

Quantenphysiker um Oriol Romero-Isart haben einen einfachen Aufbau entworfen, mit dem theoretisch beliebig stark fokussierte elektromagnetische Felder erzeugt werden können. Anwendung finden könnte das neue Verfahren zum Beispiel in der Mikroskopie oder für besonders empfindliche Sensoren.

Mikrowellen, Wärmestrahlung, Licht und Röntgenstrahlung sind Beispiele für elektromagnetische Wellen. Für viele Anwendungen ist es notwendig, diese Strahlung...

Im Focus: Physicists Design Ultrafocused Pulses

Physicists working with researcher Oriol Romero-Isart devised a new simple scheme to theoretically generate arbitrarily short and focused electromagnetic fields. This new tool could be used for precise sensing and in microscopy.

Microwaves, heat radiation, light and X-radiation are examples for electromagnetic waves. Many applications require to focus the electromagnetic fields to...

Im Focus: Navigationssystem der Hirnzellen entschlüsselt

Das menschliche Gehirn besteht aus etwa hundert Milliarden Nervenzellen. Informationen zwischen ihnen werden über ein komplexes Netzwerk aus Nervenfasern übermittelt. Verdrahtet werden die meisten dieser Verbindungen vor der Geburt nach einem genetischen Bauplan, also ohne dass äußere Einflüsse eine Rolle spielen. Mehr darüber, wie das Navigationssystem funktioniert, das die Axone beim Wachstum leitet, haben jetzt Forscher des Karlsruher Instituts für Technologie (KIT) herausgefunden. Das berichten sie im Fachmagazin eLife.

Die Gesamtlänge des Nervenfasernetzes im Gehirn beträgt etwa 500.000 Kilometer, mehr als die Entfernung zwischen Erde und Mond. Damit es beim Verdrahten der...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Internationaler Ferienkurs mit rund 600 Teilnehmern aus aller Welt

28.07.2017 | Veranstaltungen

10. Uelzener Forum: Demografischer Wandel und Digitalisierung

26.07.2017 | Veranstaltungen

Clash of Realities 2017: Anmeldung jetzt möglich. Internationale Konferenz an der TH Köln

26.07.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Firmen räumen bei der IT, Mobilgeräten und Firmen-Hardware am liebsten in der Urlaubsphase auf

28.07.2017 | Unternehmensmeldung

Dunkel war’s, der Mond schien helle: Nachthimmel oft heller als gedacht

28.07.2017 | Geowissenschaften

8,2 Millionen Euro für den Kampf gegen Leukämie

28.07.2017 | Förderungen Preise