Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Gammastrahlungsblitze aus Plasmafäden

18.04.2018

Neuartige hocheffiziente und brillante Quelle für Gammastrahlung: Anhand von Modellrechnungen haben Physiker des Heidelberger MPI für Kernphysik eine neue Methode für eine effiziente und brillante Gammastrahlungsquelle vorgeschlagen. Ein gigantischer Gammastrahlungsblitz wird hier durch die Wechselwirkung eines dichten ultra-relativistischen Elektronenstrahls mit einem dünnen leitenden Festkörper erzeugt. Die reichliche Produktion energetischer Gammastrahlen beruht auf der Aufspaltung des Elektronenstrahls in einzelne Filamente, während dieser den Festkörper durchquert. Die erreichbare Energie und Intensität der Gammastrahlung eröffnet neue und fundamentale Experimente in der Kernphysik.

Die typische Wellenlänge des Lichtes, die mit einem Objekt des Mikrokosmos wechselwirkt, ist umso kürzer, je kleiner dieses Objekt ist. Für Atome reicht dies typischerweise vom sichtbaren Licht bis zu Ultraviolett- (UV) und Röntgenstrahlung. Die Entwicklung immer leistungsfähigerer Strahlungsquellen für energiereiche Photonen dieser Art konnte in den letzten zwei Jahrzehnten große Erfolge verzeichnen.


Abb. 1: Illustration zur effizienten Erzeugung von Gammastrahlung (blau) durch einen ultrarelativistischen Elektronenstrahl (grün) hoher Dichte, der in einer dünnen Metallfolie in Filamente zerfällt.

Grafik: MPIK


Abb. 2: Spektrale Brillanz der erzeugten Gammastrahlung für Synchrotronstrahlung (rot), Comptonstreuung von Laserlicht an relativistischen Elektronen (gelb) und die neu vorgeschlagene Methode (blau).

Grafik: MPIK

Synchrotrons und Freie-Elektronen-Laser erzeugen hochintensive UV- und Röntgenstrahlen für Grundlagenforschung oder für vielfältige Anwendungen. Für die Wechselwirkung mit Atomkernen, die zehn- bis hunderttausend Mal kleiner sind als Atome, braucht es die noch kurzwelligere und energiereichere Gammastrahlung. Bis heute existieren keine effizienten Gammaquellen. Das Interesse der Forscher daran ist aber sehr groß, denn diese würden ganz neue, bisher unerreichte Möglichkeiten bieten: von der Untersuchung der Struktur von Atomkernen über exotische Prozesse in Kernmaterie bis hin zu kerntechnischen und medizinischen Anwendungen.

Es wurden verschiedene Methoden vorgeschlagen, intensive Gammastrahlung mit Photon-Energien von mehreren Millionen Elektronenvolt (eV) zu erzeugen. Zum Vergleich: Die Energie eines Photons des sichtbaren Lichts liegt in der Größenordnung von 2 eV. In allen Fällen wird versucht, mit einem extrem leistungsstarken Laser Elektronen zu beschleunigen und deren Energie in Gammastrahlung umzuwandeln.

Eine Möglichkeit wurde kürzlich an der „Extreme Light Infrastructure“ (ELI) in Rumänien betrachtet: Hier kollidieren optischen Photonen eines Laserstrahls mit relativistischen Elektronen werden dabei auf Gamma-Energien „hochgestreut“ (Compton-Effekt). Die Effizienz der Energieübertragung ist aber – wie auch bei allen anderen bisher diskutierten Mechanismen – gering: ungefähr 10% bei Einsatz eines Lasers der 10-Petawatt-Klasse (1 Petawatt = 10¹⁵ Watt).

Physiker um Teamleiter Matteo Tamburini in der Abteilung „Theoretische Quantendynamik und Quantenelektrodynamik“ unter Direktor Christoph Keitel am Heidelberger Max-Planck-Institut für Kernphysik (MPIK) haben nun einen neuartigen Mechanismus vorgeschlagen: ihre Simulationsrechnungen zeigen, dass bis zu 60% Konversionseffizienz erreichbar sind, wenn ein hochenergetischer (2 Milliarden eV) gut fokussierter Elektronenstrahl extrem hoher Dichte auf eine dünnes (0,5 mm) elektrisch leitendes Festkörperplättchen als Target geschossen wird.

Unter „normalen“ Umständen würde ein solcher Elektronenstrahl wie in einer Röntgenröhre so genannte „Bremsstrahlung“ erzeugen – bei Ablenkung und Abbremsung der Elektronen an den Atomkernen des Festkörpers handelt es sich um eine beschleunigte Bewegung geladener Teilchen, wobei nach den Gesetzen der Elektrodynamik Strahlung freigesetzt wird. Deren Energie erstreckt sich über ein breites Spektrum bis zur (maximal umwandelbaren) kinetischen Energie der Elektronen als obere Grenze.

Bei sehr hoher Dichte des Elektronenstrahls (vergleichbar mit der Dichte von Molekülen in der Luft) wird das Targetmaterial verändert und dies hat Rückwirkungen auf den Elektronenstrahl selbst. Hierzu tragen in erster Linie die im leitfähigen Material frei beweglichen Elektronen bei, welche in einer Art „Gegenstrom“ den eindringenden Elektronenstrahl kompensieren. Beide sich überlappenden Ströme erzeugen starke elektromagnetische Felder und Instabilitäten, wodurch der einfallende Elektronenstrahl in einzelne Filamente zerfällt (siehe die Illustration in Abbildung 1).

Dies wiederum verstärkt nochmals die selbsterzeugten Felder, welche heftige Beschleunigungen der ultra-relativistischen Elektronen bewirken, was letztendlich zu einer gigantischen Emission von Synchrotronstrahlung führt. Diese übertrifft die gewöhnliche Bremsstrahlung um bis zu einen Faktor 1000 an „Brillanz“. Diese ist ein Maß für die Zahl der Photonen pro Zeit, Fläche, Energieintervall und Raumwinkel. Letzterer beschreibt die Bündelung der Strahlung in Vorwärtsrichtung.

Abbildung 2 zeigt die spektrale Brillanz in Abhängigkeit von der Photonenenergie für die leistungsfähigsten Synchrotron-Quellen (rot), für Energieumwandlung durch den Compton-Effekt (gelb, ELI) und für die neue Methode (blau). Im Vergleich mit ELI ist eine jeweils um mehr als zwei Größenordnungen höhere Brillanz und höhere Gamma-Energien zu erwarten. Darüber hinaus ist die neue Methode sehr effizient - bis zu 60% der Elektronenenergie könnte in Gammastrahlen umgewandelt werden. Die Dauer der Gammastrahlungsblitze ist durch die Länge der Elektronenpakte bestimmt und liegt unter ultrakurzen 30 Femtosekunden (1 Femtosekunde = 10⁻¹⁵ s).

Die für den Mechanismus selbstverstärkender Felder erforderliche Elektronendichte ist eine technische Herausforderung. Herkömmliche Laser mit 200 Terawatt Leistung (1 Terawatt = 10¹² Watt) und einer Wiederholrate von 1 bis 10 Hertz, also einigen Blitzen pro Sekunde, stehen zur routinemäßig Erzeugung und Beschleunigung ultra-relativistischer Elektronenstrahlen zur Verfügung. Allerdings liegt die bisher erreichte Elektronendichte noch einen Faktor 10 bis 100 zu niedrig. Der erreichbare gesamte Elektronenfluss wäre aber ausreichend, wenn es gelingt, den Strahl stärker auf das Target zur Erzeugung von Gammastrahlung zu fokussieren. Ein typisches Target wäre eine Metallfolie von 0,5 mm Stärke. In der Simulation wurde Strontium untersucht, die Art des Metalls ist aber unkritisch - auch herkömmliches Aluminium sollte sich eignen.

Originalpublikation:

Giant collimated gamma-ray flashes
Alberto Benedetti, Matteo Tamburini, and Christoph H. Keitel
Nature Photonics (2018), doi:10.1038/s41566-018-0139-y

Kontakt:

Dr. Matteo Tamburini
Abteilung Hon.-Prof. Dr. Christoph H. Keitel
Max-Planck-Institut für Kernphysik
Tel.: +49 6221-516-163
E-mail: matteo.tamburini(at)mpi-hd.mpg.de

Weitere Informationen:

http://dx.doi.org/10.1038/s41566-018-0139-y Originalpublikation
https://www.mpi-hd.mpg.de/keitel/ Abteilung „Theoretische Quantendynamik und Quantenelektrodynamik“ am MPIK (englisch)

Dr. Bernold Feuerstein | Max-Planck-Institut für Kernphysik

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Raumschrott im Fokus
22.05.2018 | Universität Bern

nachricht Countdown für Kilogramm, Kelvin und Co.
18.05.2018 | Physikalisch-Technische Bundesanstalt (PTB)

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Bose-Einstein-Kondensat im Riesenatom - Universität Stuttgart untersucht exotisches Quantenobjekt

Passt eine ultrakalte Wolke aus zehntausenden Rubidium-Atomen in ein einzelnes Riesenatom? Forscherinnen und Forschern am 5. Physikalischen Institut der Universität Stuttgart ist dies erstmals gelungen. Sie zeigten einen ganz neuen Ansatz, die Wechselwirkung von geladenen Kernen mit neutralen Atomen bei weitaus niedrigeren Temperaturen zu untersuchen, als es bisher möglich war. Dies könnte einen wichtigen Schritt darstellen, um in Zukunft quantenmechanische Effekte in der Atom-Ion Wechselwirkung zu studieren. Das renommierte Fachjournal Physical Review Letters und das populärwissenschaftliche Begleitjournal Physics berichteten darüber.*)

In dem Experiment regten die Forscherinnen und Forscher ein Elektron eines einzelnen Atoms in einem Bose-Einstein-Kondensat mit Laserstrahlen in einen riesigen...

Im Focus: Algorithmen für die Leberchirurgie – weltweit sicherer operieren

Die Leber durchlaufen vier komplex verwobene Gefäßsysteme. Die chirurgische Entfernung von Tumoren ist daher oft eine schwierige Aufgabe. Das Fraunhofer-Institut für Bildgestützte Medizin MEVIS hat Algorithmen entwickelt, die die Bilddaten von Patienten analysieren und chirurgische Risiken berechnen. Leberkrebsoperationen werden damit besser planbar und sicherer.

Jährlich erkranken weltweit 750.000 Menschen neu an Leberkrebs, viele weitere entwickeln Lebermetastasen aufgrund anderer Krebserkrankungen. Ein chirurgischer...

Im Focus: Positronen leuchten besser

Leuchtstoffe werden schon lange benutzt, im Alltag zum Beispiel im Bildschirm von Fernsehgeräten oder in PC-Monitoren, in der Wissenschaft zum Untersuchen von Plasmen, Teilchen- oder Antiteilchenstrahlen. Gleich ob Teilchen oder Antiteilchen – treffen sie auf einen Leuchtstoff auf, regen sie ihn zum Lumineszieren an. Unbekannt war jedoch bisher, dass die Lichtausbeute mit Elektronen wesentlich niedriger ist als mit Positronen, ihren Antiteilchen. Dies hat Dr. Eve Stenson im Max-Planck-Institut für Plasmaphysik (IPP) in Garching und Greifswald jetzt beim Vorbereiten von Experimenten mit Materie-Antimaterie-Plasmen entdeckt.

„Wäre Antimaterie nicht so schwierig herzustellen, könnte man auf eine Ära hochleuchtender Niederspannungs-Displays hoffen, in der die Leuchtschirme nicht von...

Im Focus: Erklärung für rätselhafte Quantenoszillationen gefunden

Sogenannte Quanten-Vielteilchen-„Scars“ lassen Quantensysteme länger außerhalb des Gleichgewichtszustandes verweilen. Studie wurde in Nature Physics veröffentlicht

Forschern der Harvard Universität und des MIT war es vor kurzem gelungen, eine Rekordzahl von 53 Atomen einzufangen und ihren Quantenzustand einzeln zu...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

48V im Fokus!

21.05.2018 | Veranstaltungen

„Data Science“ – Theorie und Anwendung: Internationale Tagung unter Leitung der Uni Paderborn

18.05.2018 | Veranstaltungen

Visual-Computing an Bord der MS Wissenschaft

17.05.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

48V im Fokus!

21.05.2018 | Veranstaltungsnachrichten

Bose-Einstein-Kondensat im Riesenatom - Universität Stuttgart untersucht exotisches Quantenobjekt

18.05.2018 | Physik Astronomie

Countdown für Kilogramm, Kelvin und Co.

18.05.2018 | Physik Astronomie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics