Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Gammastrahlenausbruch mit Superlativen beobachtet

22.11.2013
Mit dem Gammastrahlen-Weltraumteleskop Fermi hat ein internationales Forscherteam – darunter Astroteilchenphysiker um Prof. Olaf Reimer von der Universität Innsbruck und Forscher vom Max-Planck-Institut für extraterrestrische Physik in Garching – den bislang hellsten, höchstenergetischen und am längsten andauernden Gammastrahlenausbruch beobachten können. Die Wissenschaftler berichten nun in der Fachzeitschrift Science über die Ergebnisse eines außergewöhnlichen astrophysikalischen Glückmoments.

Am 27. April 2013 registrierten die Detektoren des Fermi-Weltraumteleskops im Sternbild des Löwen eine außergewöhnliche Eruption von hochenergetischer Gammastrahlung. Schnell wurde aus Folgebeobachtungen von der Erde klar, dass sich diese Beobachtung zu einem Glücksmoment in der Erforschung derartiger Gammastrahlungsblitze entwickeln wird: „Wir Wissenschaftler warteten schon lange auf einen derartig eindeutigen Rekordbrecher“, sagt der Innsbrucker Astroteilchenphysiker Olaf Reimer.


Der nördliche Himmel im Lichte von hochenergetischer Gammastrahlung nach der Detektion des Gammastrahlenausbruches GRB 130427A durch das Fermi-Weltraumteleskop.
NASA/DOE/Fermi LAT Collaboration


Illustration des möglichen Ablaufs dieser stellaren Katastrophe. NASA's Goddard Space Flight Center

„GRB130427A, so die offizielle Bezeichnung dieses Gammastrahlungsausbruches, war nicht nur der bisher hellste Gamma-Ray Burst (GRB), sondern auch der mit dem am längsten andauernder Nachleuchten im Gammastrahlenbereich.“ Seitdem haben sich die Instrumente zur Beobachtung derartiger Phänomene stetig verbessert, trotzdem bietet GRB130427A noch weitere Rekorde: „Seit dem Start des Fermi-Weltraumteleskops im Juni 2008 war dieser Blitz auch derjenige mit der bisher höchsten Energie vermessene und mit den meisten Teleskopen und Satelliten nachbeobachtete Gammastrahlungsausbruch“, zeigt sich Reimer stolz.

Rätselhafte Gammastrahlenblitze

Obwohl die Entdeckung kosmischer Gammastrahlenblitze aus einem Programm zur Überwachung von Nukleartests auf der Erde in der Zeit des Kalten Krieges resultierte, stellt die Erforschung dieser rätselhaften Explosionen die Wissenschaft noch immer vor Probleme. „Seit Jahrzehnten schon kennt man derartige Gammasstrahlungsausbrüche als die energiereichsten, beobachtbaren Phänomene in unserem Universum“, erzählt Olaf Reimer. Wie allerdings diese Ausbrüche entstehen, darüber diskutieren Astrophysiker seit mehr als 40 Jahren. Tausende von diesen jeweils einmalig auftretenden Blitzen wurden seitdem beobachtet, ausgewertet und modelliert.

„Wir gehen davon aus, dass der wesentliche Teil der Energie einer stellaren Katastrophe in einem nur wenige Sekunden andauernden Zeitfenster freigesetzt wird. Vermutlich gelingt das nur, wenn ein hochgradig fokussierter Materiestrahl die Hülle eines kollabierenden, massereichen Sterns durchstößt und dann auf nahezu Lichtgeschwindigkeit beschleunigt wird“, beschreibt Reimer die dramatischen Ereignisse. „Aber wie genau die prompte Gammastrahlung in diesem fokussierten Materiestrahl erzeugt wird, und wie der Materiestrahl mit seiner Umgebung wechselwirkt und das Nachleuchten erzeugt, ist nun wieder rätselhafter denn je,“ sagt der Principal Investigator des Gamma-Ray Burst Monitors vom Fermi-Weltraumteleskop, Dr. Jochen Greiner vom Max-Planck-Institut für extraterrestrische Physik in Garching.

GRB130427A – ein singulärer Glücksfall

Mit den Instrumenten von NASA‘s Fermi Gammastrahlen-Weltraumteleskop konnte nun zu allen bisher beobachteten Gammastrahlungsausbrüchen ein Spitzenreiter hinzugefügt werden. Nicht nur die Eigenschaften dieses Gammastrahlenausbruchs, sondern auch die Vielzahl der davon motivierten Folgebeobachtungen setzen Rekorde: Bis zum September 2013 haben 58 internationale Observatorien und Teleskope das Nachleuchten von GRB130427A in anderen Wellenlängenbereichen beobachten können.

Allerdings verbindet man Gammastrahlenausbrüche zuallererst mit hochenergetischer Gammastrahlung. Hier hat GRB 130427A den ersten Rekord zu verzeichnen: Das höchstenergetische Photon wurde mit 95 GeV (etwa das Hundert Milliardenfache der Energie eines Photons im sichtbaren Licht) vermessen, ein Wert, der bisher noch nie von Gammablitzen verzeichnet wurde.

Die kosmologische „Nähe“ und damit überdurchschnittliche Helligkeit erlaubt es, das Abklingen der Gammastrahlung auch ungewöhnlich lange aufzunehmen. Aus diesem Grund konnte auch eine Großzahl von anderen Satelliten und bodengebundenen Teleskopen in anderen, niederen Wellenlängenbereichen dem Nachleuchten folgen. Die Vielzahl der nun verfügbaren spektralen und temporalen Messungen wird diesen Gammablitz zum vermutlich bestbeobachteten und meistdiskutierten Objekt dieser Klasse machen.

Neue Erkenntnisse konfrontieren bisherige Vorstellungen

Neben den Superlativen, die den Gammastrahlenausbruch GRB 130427A begleiten, haben die exquisiten Daten des Fermi-Weltraumteleskopes auch die bisherigen Modellvorstellungen gehörig in Frage gestellt und erfordern nun eine kritische Sicht auf Modellvorstellungen aller Gammastrahlenblitze. Das breit akzeptierte Modell zur Erklärung des Nachleuchtens durch Synchrotronstrahlung energiereicher Elektronen, die ihre Energie aus dem Schock beim Beschleunigen auf Lichtgeschwindigkeit beziehen sollten, wirft Probleme auf.

„Vermutlich müssen nun andere, extreme Strahlungsmechanismen herangezogen werden, um das langdauernde Nachleuchten im Lichte höchstenergetischer Photonen überzeugend erklären zu können“, resümmiert Olaf Reimer. Noch dramatischer ist die Lage bei der Erklärung der prompten Gammaemission. „Das seit circa 15 Jahren favorisierte Modell der ‚internen Schocks’, bei denen später emittierte, schnellere Schalen mit früher emittierten langsameren Schalen kollidieren, ist nun eindeutig widerlegt“, erklärt Jochen Greiner vom Max-Planck-Institut für extraterrestrische Physik. „Wir erleben hier gerade einen Fall, bei dem außergewöhnliche Beobachtungen eines spektakulären astrophysikalischen Phänomens, gepaart mit einer guten Portion Glück, lang etablierte Interpretationen revidieren werden.“

Am Bau der Detektoren auf Fermi und am Betrieb des Observatoriums sind neben der NASA und dem US-Energieministerium Forschungseinrichtungen in den Vereinigten Staaten, in Frankreich, Italien, Schweden, Deutschland und Japan beteiligt.

Publikationen:

Fermi-LAT Observations of the Gamma-ray Burst GRB 130427A
Ackermann et al.; Science Express am 22.11.2013
DOI: 10.1126/science.1242302
The First Pulse of the Extremely Bright GRB 130427A: A Test Lab for Synchrotron Shocks
Preece et al., Science Express am 22.11.2013
DOI: 10.1126/science.1242353
Weitere Bilder: http://svs.gsfc.nasa.gov/vis/a010000/a011200/a011261/
Weitere Informationen:
http://dx.doi.org/10.1126/science.1242302
- Fermi-LAT Observations of the Gamma-ray Burst GRB 130427A; Ackermann et al.; Science Express am 22.11.2013, DOI: 10.1126/science.1242302
http://dx.doi.org/10.1126/science.1242353
- The First Pulse of the Extremely Bright GRB 130427A: A Test Lab for Synchrotron Shocks

Preece et al.; Science Express am 22.11.2013; DOI: 10.1126/science.1242353

Dr. Christian Flatz | Universität Innsbruck
Weitere Informationen:
http://www.uibk.ac.at
http://svs.gsfc.nasa.gov/vis/a010000/a011200/a011261/

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Vorstoß ins Innere der Atome
23.02.2018 | Max-Planck-Institut für Quantenoptik

nachricht Quanten-Wiederkehr: Alles wird wieder wie früher
23.02.2018 | Technische Universität Wien

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Vorstoß ins Innere der Atome

Mit Hilfe einer neuen Lasertechnologie haben es Physiker vom Labor für Attosekundenphysik der LMU und des MPQ geschafft, Attosekunden-Lichtblitze mit hoher Intensität und Photonenenergie zu produzieren. Damit konnten sie erstmals die Interaktion mehrere Photonen in einem Attosekundenpuls mit Elektronen aus einer inneren atomaren Schale beobachten konnten.

Wer die ultraschnelle Bewegung von Elektronen in inneren atomaren Schalen beobachten möchte, der benötigt ultrakurze und intensive Lichtblitze bei genügend...

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

Eine Gruppe von Forschern um Andrea Cavalleri am Max-Planck-Institut für Struktur und Dynamik der Materie (MPSD) in Hamburg hat eine Methode demonstriert, die es erlaubt die interatomaren Kräfte eines Festkörpers detailliert auszumessen. Ihr Artikel Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, nun online in Nature veröffentlich, erläutert, wie Terahertz-Laserpulse die Atome eines Festkörpers zu extrem hohen Auslenkungen treiben können.

Die zeitaufgelöste Messung der sehr unkonventionellen atomaren Bewegungen, die einer Anregung mit extrem starken Lichtpulsen folgen, ermöglichte es der...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Verlässliche Quantencomputer entwickeln

Internationalem Forschungsteam gelingt wichtiger Schritt auf dem Weg zur Lösung von Zertifizierungsproblemen

Quantencomputer sollen künftig algorithmische Probleme lösen, die selbst die größten klassischen Superrechner überfordern. Doch wie lässt sich prüfen, dass der...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Von festen Körpern und Philosophen

23.02.2018 | Veranstaltungen

Spannungsfeld Elektromobilität

23.02.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - April 2018

21.02.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Vorstoß ins Innere der Atome

23.02.2018 | Physik Astronomie

Wirt oder Gast? Proteomik gibt neue Aufschlüsse über Reaktion von Rifforganismen auf Umweltstress

23.02.2018 | Biowissenschaften Chemie

Wie Zellen unterschiedlich auf Stress reagieren

23.02.2018 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics