Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Gammastrahlen aus dem Kern aktiver Galaxien

22.05.2014

Beobachtungen zeigen, dass die Strahlungsausbrüche in unmittelbarer Nähe der zentralen Schwarzen Löcher entstehen

Blazare zählen zu den größten und energiereichsten Objekten im Universum. Aus den Kernen dieser aktiven Galaxien schießen Materiestrahlen („Jets“), die mit gewaltigen Ausbrüchen von Gammastrahlung einhergehen.


Kosmisches Kraftwerk: Die künstlerische Darstellung zeigt die Zentralregion einer aktiven Galaxie – eine Materiescheibe (braun/gelb), über die Material spiralförmig in das supermassereiche Schwarze Loch im Zentrum (schwarz) einströmt. Ein energiereicher Radiojet (blau), gebündelt durch starke Magnetfelder, wird senkrecht zur Scheibe abgestrahlt. Innerhalb des Jets werden nicht nur Radio-, sondern auch Gammaphotonen erzeugt. Die neuen Resultate zeigen, dass die Gammastrahlung in der innersten Region des Jets (weiß) entsteht. Für die aktive Galaxie 3C 454.3 haben die Astronomen einen Abstand von nur wenigen Lichtjahren vom zentralen Schwarzen Loch abgeschätzt. Die Galaxie liegt in Richtung des Sternbilds Pegasus, das Signal erreicht nach einer Laufzeit von etwa sieben Milliarden Jahren die Erde.

© NASA JPL/CalTech


Beobachtungsquartett: Die für Messungen im Radio- und Gammastrahlenbereich eingesetzten Teleskope waren Effelsberg, APEX, Fermi und IRAM (im Uhrzeigersinn von links oben).

© MPIfR/N. Junkes (100m), APEX-Team (12m), NASA E/PO, Sonoma State University, Aurore Simonnet (Fermi), MPIfR (30m)

Ein internationales Team um Lars Fuhrmann vom Bonner Max-Planck-Institut für Radioastronomie hat jetzt erstmals einen Zusammenhang zwischen den Gammaausbrüchen und ihren Pendants in mehreren Radiofrequenzen bestätigt. Außerdem lösten die Forscher das Rätsel um den Ursprungsort der Ausbrüche: Diese stammen aus unmittelbarer Nähe zu den supermassereichen Schwarzen Löchern im Zentrum der Blazare.

Spezielle Arten von weit entfernten aktiven Galaxien zeigen in ihrem Innersten extreme Vorgänge: In der Nachbarschaft eines rotierenden Schwarzen Lochs mit einer Masse von mehreren Milliarden Sonnen werden unvorstellbare Energiemengen freigesetzt – und das häufig in Form von Gammaphotonen im Mega- oder sogar Gigaelektronenvolt-Bereich. Derartige Energiemengen entstehen offenbar durch die „Fütterung“ des zentralen Schwarzen Lochs mit Sternen aus der Umgebung.

Dabei bewegt sich die Materie innerhalb der sogenannten Akkretionsscheibe auf spiralförmigen Bahnen in Richtung des Massemonsters. Ein Teil des einfallenden Gases wird, durch starke Magnetfelder gebündelt, in zwei energiereichen Plasmajets senkrecht zur Akkretionsscheibe fast bis auf Lichtgeschwindigkeit beschleunigt und schießt aus dem galaktischen Zentrum ins All hinaus.

Die Astronomen verstehen jedoch einige der damit verbundenen physikalischen Prozesse immer noch nicht im Detail. Wie genau werden die hochenergetischen Gammaphotonen produziert? Wo liegt der Ursprung der starken Strahlungsausbrüche, die sich entlang des gesamten elektromagnetischen Spektrums beobachten lassen?

Neue Instrumente sowie Programme, die eine koordinierte Beobachtung von unterschiedlichen Wellenlängen- und Energiebereichen ermöglichen, eröffnen überraschende Einsichten in die extreme Physik dieser aktiven Galaxienkerne. F-GAMMA (Fermi-GST AGN Multi-frequency Monitoring Alliance) heißt eines der Projekte, das die gleichzeitige Untersuchung von elf unterschiedlichen Radiofrequenzbändern gestattet.

Mit drei Weltklasse-Radioteleskopen – der 100-Meter-Antenne Effelsberg, dem 30-Meter-IRAM-Teleskop auf dem Pico Veleta (Spanien) und der 12-Meter-APEX-Schüssel in Chile – haben die Wissenschaftler um Lars Fuhrmann die regelmäßig auftretenden Strahlungsausbrüche von insgesamt 60 leuchtkräftigen aktiven Galaxien über viele Jahre hinweg systematisch überwacht.

Zusätzlich zu den Radiodaten hatten die Forscher Hochenergiedaten von dem 2008 gestarteten US-amerikanischen Weltraumteleskop Fermi zur Verfügung und nutzten neue statistische Methoden, um eine Vielzahl von Strahlungsausbrüchen in beiden Wellenlängenbereichen zu addieren. „Es war schon aufregend zu sehen, wie das statistische Rauschen in unseren gemittelten Daten runterging und die Korrelation zwischen Radio- und Gammabereich immer deutlicher sichtbar wurde“, sagt Stefan Larsson von der Universität Stockholm in Schweden. Dies zeige letztendlich eine signifikante Verbindung zwischen beiden, die sogar für die unterschiedlichen Radiofrequenzen bestehen bleibe.

Die Studie beweist auch, dass die Ausbrüche im Radiobereich später im Teleskop sichtbar sind als die entsprechenden Ausbrüche im Gammalicht, wobei die mittleren Verzögerungen zwischen zehn und 80 Tagen liegen. „Wir können außerdem zum ersten Mal sehen, dass die Verzögerungen im Radiobereich zu höheren Frequenzen hin immer kleiner werden“, sagt Emmanouil Angelakis vom Max-Planck-Institut für Radioastronomie. Da man bei höheren Radiofrequenzen immer tiefer in den Jet hineinschaut, schließen die Forscher daraus, dass die Photonen der Gammastrahlung tatsächlich aus dem innersten Bereich des Jets kommen.

Mithilfe der gemessenen Zeitverzögerungen war das Team schließlich in der Lage, Abstände von weniger als einigen zehn Lichtjahren zwischen den Regionen im Jet abzuschätzen, in denen die Radio- und Gammaausbrüche stattfinden. „Auf der Basis dieser Messungen können wir für die Galaxie 3C 454.3, eine der hellsten Gammaquellen am Himmel, sogar abschätzen, wie weit von dem zentralen Schwarzen Loch selbst die meisten der Gammaphotonen erzeugt werden“, sagt Lars Fuhrmann. „Wir sprechen dabei über einen Abstand von nur wenigen Lichtjahren – das ist sehr nahe zum Fußpunkt des Jets und zum Zentralobjekt.“ Das habe schwerwiegende Auswirkungen auf die physikalischen Prozesse, welche die Gammaphotonen hervorrufen.

„Seit der Mission des Satelliten Compton in den 1990er-Jahren wurde diskutiert, ob die beobachteten Radiostrahlungsausbrüche in einer physikalischen Verbindung mit den ähnlich erscheinenden Gammastrahlenausbrüchen stehen“, sagt Anton Zensus, Direktor am Max-Planck-Institut für Radioastronomie. „Mit unserer systematischen Kombination von Radiodaten aus dem F-GAMMA-Programm und Daten des Satelliten Fermi sowie speziellen Analysetechniken können wir das jetzt endlich bestätigen.“

Ansprechpartner 

Dr. Norbert Junkes

Presse- und Öffentlichkeitsarbeit

Max-Planck-Institut für Radioastronomie, Bonn

Telefon: +49 228 525-399

 

Dr. Lars Fuhrmann

Max-Planck-Institut für Radioastronomie, Bonn

Telefon: +49 228 525-424

 

Prof. Dr. J. Anton Zensus

Max-Planck-Institut für Radioastronomie, Bonn

Telefon: +49 228 525-298

 

Dr. Emmanouil Angelakis

Max-Planck-Institut für Radioastronomie, Bonn

Telefon: +49 228 525-217

 

Originalpublikation

 
L. Fuhrmann, S. Larsson, J. Chiang, E. Angelakis, J. A. Zensus, I. Nestoras, T. P. Krichbaum, H. Ungerechts, A. Sievers, V. Pavlidou, A. C. S. Readhead, W. Max-Moerbeck, and T. J. Pearson
Detection of significant cm to sub-mm band radio and γ-ray correlated variability in Fermi bright blazars
MNRAS, 441, 1899-1909, arXiv:1403.4170 (http://arxiv.org/abs/1403.4170)

Dr. Norbert Junkes | Max-Planck-Institut

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Scharfe Röntgenblitze aus dem Atomkern
17.08.2017 | Max-Planck-Institut für Kernphysik, Heidelberg

nachricht Optische Technologien für schnellere Computer / „Licht“ mit Wespentaille
16.08.2017 | Universität Duisburg-Essen

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Unterwasserroboter soll nach einem Jahr in der arktischen Tiefsee auftauchen

Am Dienstag, den 22. August wird das Forschungsschiff Polarstern im norwegischen Tromsø zu einer besonderen Expedition in die Arktis starten: Der autonome Unterwasserroboter TRAMPER soll nach einem Jahr Einsatzzeit am arktischen Tiefseeboden auftauchen. Dieses Gerät und weitere robotische Systeme, die Tiefsee- und Weltraumforscher im Rahmen der Helmholtz-Allianz ROBEX gemeinsam entwickelt haben, werden nun knapp drei Wochen lang unter Realbedingungen getestet. ROBEX hat das Ziel, neue Technologien für die Erkundung schwer erreichbarer Gebiete mit extremen Umweltbedingungen zu entwickeln.

„Auftauchen wird der TRAMPER“, sagt Dr. Frank Wenzhöfer vom Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung (AWI) selbstbewusst. Der...

Im Focus: Mit Barcodes der Zellentwicklung auf der Spur

Darüber, wie sich Blutzellen entwickeln, existieren verschiedene Auffassungen – sie basieren jedoch fast ausschließlich auf Experimenten, die lediglich Momentaufnahmen widerspiegeln. Wissenschaftler des Deutschen Krebsforschungszentrums stellen nun im Fachjournal Nature eine neue Technik vor, mit der sich das Geschehen dynamisch erfassen lässt: Mithilfe eines „Zufallsgenerators“ versehen sie Blutstammzellen mit genetischen Barcodes und können so verfolgen, welche Zelltypen aus der Stammzelle hervorgehen. Diese Technik erlaubt künftig völlig neue Einblicke in die Entwicklung unterschiedlicher Gewebe sowie in die Krebsentstehung.

Wie entsteht die Vielzahl verschiedener Zelltypen im Blut? Diese Frage beschäftigt Wissenschaftler schon lange. Nach der klassischen Vorstellung fächern sich...

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Forscher entwickeln maisförmigen Arzneimittel-Transporter zum Inhalieren

Er sieht aus wie ein Maiskolben, ist winzig wie ein Bakterium und kann einen Wirkstoff direkt in die Lungenzellen liefern: Das zylinderförmige Vehikel für Arzneistoffe, das Pharmazeuten der Universität des Saarlandes entwickelt haben, kann inhaliert werden. Professor Marc Schneider und sein Team machen sich dabei die körpereigene Abwehr zunutze: Makrophagen, die Fresszellen des Immunsystems, fressen den gesundheitlich unbedenklichen „Nano-Mais“ und setzen dabei den in ihm enthaltenen Wirkstoff frei. Bei ihrer Forschung arbeiteten die Pharmazeuten mit Forschern der Medizinischen Fakultät der Saar-Uni, des Leibniz-Instituts für Neue Materialien und der Universität Marburg zusammen Ihre Forschungsergebnisse veröffentlichten die Wissenschaftler in der Fachzeitschrift Advanced Healthcare Materials. DOI: 10.1002/adhm.201700478

Ein Medikament wirkt nur, wenn es dort ankommt, wo es wirken soll. Wird ein Mittel inhaliert, muss der Wirkstoff in der Lunge zuerst die Hindernisse...

Im Focus: Exotische Quantenzustände: Physiker erzeugen erstmals optische „Töpfe" für ein Super-Photon

Physikern der Universität Bonn ist es gelungen, optische Mulden und komplexere Muster zu erzeugen, in die das Licht eines Bose-Einstein-Kondensates fließt. Die Herstellung solch sehr verlustarmer Strukturen für Licht ist eine Voraussetzung für komplexe Schaltkreise für Licht, beispielsweise für die Quanteninformationsverarbeitung einer neuen Computergeneration. Die Wissenschaftler stellen nun ihre Ergebnisse im Fachjournal „Nature Photonics“ vor.

Lichtteilchen (Photonen) kommen als winzige, unteilbare Portionen vor. Viele Tausend dieser Licht-Portionen lassen sich zu einem einzigen Super-Photon...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

European Conference on Eye Movements: Internationale Tagung an der Bergischen Universität Wuppertal

18.08.2017 | Veranstaltungen

Einblicke ins menschliche Denken

17.08.2017 | Veranstaltungen

Eröffnung der INC.worX-Erlebniswelt während der Technologie- und Innovationsmanagement-Tagung 2017

16.08.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Eine Karte der Zellkraftwerke

18.08.2017 | Biowissenschaften Chemie

Chronische Infektionen aushebeln: Ein neuer Wirkstoff auf dem Weg in die Entwicklung

18.08.2017 | Biowissenschaften Chemie

Computer mit Köpfchen

18.08.2017 | Informationstechnologie