Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Gammastrahlen aus dem Kern aktiver Galaxien

22.05.2014

Beobachtungen zeigen, dass die Strahlungsausbrüche in unmittelbarer Nähe der zentralen Schwarzen Löcher entstehen

Blazare zählen zu den größten und energiereichsten Objekten im Universum. Aus den Kernen dieser aktiven Galaxien schießen Materiestrahlen („Jets“), die mit gewaltigen Ausbrüchen von Gammastrahlung einhergehen.


Kosmisches Kraftwerk: Die künstlerische Darstellung zeigt die Zentralregion einer aktiven Galaxie – eine Materiescheibe (braun/gelb), über die Material spiralförmig in das supermassereiche Schwarze Loch im Zentrum (schwarz) einströmt. Ein energiereicher Radiojet (blau), gebündelt durch starke Magnetfelder, wird senkrecht zur Scheibe abgestrahlt. Innerhalb des Jets werden nicht nur Radio-, sondern auch Gammaphotonen erzeugt. Die neuen Resultate zeigen, dass die Gammastrahlung in der innersten Region des Jets (weiß) entsteht. Für die aktive Galaxie 3C 454.3 haben die Astronomen einen Abstand von nur wenigen Lichtjahren vom zentralen Schwarzen Loch abgeschätzt. Die Galaxie liegt in Richtung des Sternbilds Pegasus, das Signal erreicht nach einer Laufzeit von etwa sieben Milliarden Jahren die Erde.

© NASA JPL/CalTech


Beobachtungsquartett: Die für Messungen im Radio- und Gammastrahlenbereich eingesetzten Teleskope waren Effelsberg, APEX, Fermi und IRAM (im Uhrzeigersinn von links oben).

© MPIfR/N. Junkes (100m), APEX-Team (12m), NASA E/PO, Sonoma State University, Aurore Simonnet (Fermi), MPIfR (30m)

Ein internationales Team um Lars Fuhrmann vom Bonner Max-Planck-Institut für Radioastronomie hat jetzt erstmals einen Zusammenhang zwischen den Gammaausbrüchen und ihren Pendants in mehreren Radiofrequenzen bestätigt. Außerdem lösten die Forscher das Rätsel um den Ursprungsort der Ausbrüche: Diese stammen aus unmittelbarer Nähe zu den supermassereichen Schwarzen Löchern im Zentrum der Blazare.

Spezielle Arten von weit entfernten aktiven Galaxien zeigen in ihrem Innersten extreme Vorgänge: In der Nachbarschaft eines rotierenden Schwarzen Lochs mit einer Masse von mehreren Milliarden Sonnen werden unvorstellbare Energiemengen freigesetzt – und das häufig in Form von Gammaphotonen im Mega- oder sogar Gigaelektronenvolt-Bereich. Derartige Energiemengen entstehen offenbar durch die „Fütterung“ des zentralen Schwarzen Lochs mit Sternen aus der Umgebung.

Dabei bewegt sich die Materie innerhalb der sogenannten Akkretionsscheibe auf spiralförmigen Bahnen in Richtung des Massemonsters. Ein Teil des einfallenden Gases wird, durch starke Magnetfelder gebündelt, in zwei energiereichen Plasmajets senkrecht zur Akkretionsscheibe fast bis auf Lichtgeschwindigkeit beschleunigt und schießt aus dem galaktischen Zentrum ins All hinaus.

Die Astronomen verstehen jedoch einige der damit verbundenen physikalischen Prozesse immer noch nicht im Detail. Wie genau werden die hochenergetischen Gammaphotonen produziert? Wo liegt der Ursprung der starken Strahlungsausbrüche, die sich entlang des gesamten elektromagnetischen Spektrums beobachten lassen?

Neue Instrumente sowie Programme, die eine koordinierte Beobachtung von unterschiedlichen Wellenlängen- und Energiebereichen ermöglichen, eröffnen überraschende Einsichten in die extreme Physik dieser aktiven Galaxienkerne. F-GAMMA (Fermi-GST AGN Multi-frequency Monitoring Alliance) heißt eines der Projekte, das die gleichzeitige Untersuchung von elf unterschiedlichen Radiofrequenzbändern gestattet.

Mit drei Weltklasse-Radioteleskopen – der 100-Meter-Antenne Effelsberg, dem 30-Meter-IRAM-Teleskop auf dem Pico Veleta (Spanien) und der 12-Meter-APEX-Schüssel in Chile – haben die Wissenschaftler um Lars Fuhrmann die regelmäßig auftretenden Strahlungsausbrüche von insgesamt 60 leuchtkräftigen aktiven Galaxien über viele Jahre hinweg systematisch überwacht.

Zusätzlich zu den Radiodaten hatten die Forscher Hochenergiedaten von dem 2008 gestarteten US-amerikanischen Weltraumteleskop Fermi zur Verfügung und nutzten neue statistische Methoden, um eine Vielzahl von Strahlungsausbrüchen in beiden Wellenlängenbereichen zu addieren. „Es war schon aufregend zu sehen, wie das statistische Rauschen in unseren gemittelten Daten runterging und die Korrelation zwischen Radio- und Gammabereich immer deutlicher sichtbar wurde“, sagt Stefan Larsson von der Universität Stockholm in Schweden. Dies zeige letztendlich eine signifikante Verbindung zwischen beiden, die sogar für die unterschiedlichen Radiofrequenzen bestehen bleibe.

Die Studie beweist auch, dass die Ausbrüche im Radiobereich später im Teleskop sichtbar sind als die entsprechenden Ausbrüche im Gammalicht, wobei die mittleren Verzögerungen zwischen zehn und 80 Tagen liegen. „Wir können außerdem zum ersten Mal sehen, dass die Verzögerungen im Radiobereich zu höheren Frequenzen hin immer kleiner werden“, sagt Emmanouil Angelakis vom Max-Planck-Institut für Radioastronomie. Da man bei höheren Radiofrequenzen immer tiefer in den Jet hineinschaut, schließen die Forscher daraus, dass die Photonen der Gammastrahlung tatsächlich aus dem innersten Bereich des Jets kommen.

Mithilfe der gemessenen Zeitverzögerungen war das Team schließlich in der Lage, Abstände von weniger als einigen zehn Lichtjahren zwischen den Regionen im Jet abzuschätzen, in denen die Radio- und Gammaausbrüche stattfinden. „Auf der Basis dieser Messungen können wir für die Galaxie 3C 454.3, eine der hellsten Gammaquellen am Himmel, sogar abschätzen, wie weit von dem zentralen Schwarzen Loch selbst die meisten der Gammaphotonen erzeugt werden“, sagt Lars Fuhrmann. „Wir sprechen dabei über einen Abstand von nur wenigen Lichtjahren – das ist sehr nahe zum Fußpunkt des Jets und zum Zentralobjekt.“ Das habe schwerwiegende Auswirkungen auf die physikalischen Prozesse, welche die Gammaphotonen hervorrufen.

„Seit der Mission des Satelliten Compton in den 1990er-Jahren wurde diskutiert, ob die beobachteten Radiostrahlungsausbrüche in einer physikalischen Verbindung mit den ähnlich erscheinenden Gammastrahlenausbrüchen stehen“, sagt Anton Zensus, Direktor am Max-Planck-Institut für Radioastronomie. „Mit unserer systematischen Kombination von Radiodaten aus dem F-GAMMA-Programm und Daten des Satelliten Fermi sowie speziellen Analysetechniken können wir das jetzt endlich bestätigen.“

Ansprechpartner 

Dr. Norbert Junkes

Presse- und Öffentlichkeitsarbeit

Max-Planck-Institut für Radioastronomie, Bonn

Telefon: +49 228 525-399

 

Dr. Lars Fuhrmann

Max-Planck-Institut für Radioastronomie, Bonn

Telefon: +49 228 525-424

 

Prof. Dr. J. Anton Zensus

Max-Planck-Institut für Radioastronomie, Bonn

Telefon: +49 228 525-298

 

Dr. Emmanouil Angelakis

Max-Planck-Institut für Radioastronomie, Bonn

Telefon: +49 228 525-217

 

Originalpublikation

 
L. Fuhrmann, S. Larsson, J. Chiang, E. Angelakis, J. A. Zensus, I. Nestoras, T. P. Krichbaum, H. Ungerechts, A. Sievers, V. Pavlidou, A. C. S. Readhead, W. Max-Moerbeck, and T. J. Pearson
Detection of significant cm to sub-mm band radio and γ-ray correlated variability in Fermi bright blazars
MNRAS, 441, 1899-1909, arXiv:1403.4170 (http://arxiv.org/abs/1403.4170)

Dr. Norbert Junkes | Max-Planck-Institut

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Quantenmechanik ist komplex genug – vorerst …
21.04.2017 | Universität Wien

nachricht Tief im Inneren von M87
20.04.2017 | Max-Planck-Institut für Radioastronomie

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Immunzellen helfen bei elektrischer Reizleitung im Herzen

Erstmals elektrische Kopplung von Muskelzellen und Makrophagen im Herzen nachgewiesen / Erkenntnisse könnten neue Therapieansätze bei Herzinfarkt und Herzrhythmus-Störungen ermöglichen / Publikation am 20. April 2017 in Cell

Makrophagen, auch Fresszellen genannt, sind Teil des Immunsystems und spielen eine wesentliche Rolle in der Abwehr von Krankheitserregern und bei der...

Im Focus: Tief im Inneren von M87

Die Galaxie M87 enthält ein supermassereiches Schwarzes Loch von sechs Milliarden Sonnenmassen im Zentrum. Ihr leuchtkräftiger Jet dominiert das beobachtete Spektrum über einen Frequenzbereich von 10 Größenordnungen. Aufgrund ihrer Nähe, des ausgeprägten Jets und des sehr massereichen Schwarzen Lochs stellt M87 ein ideales Laboratorium dar, um die Entstehung, Beschleunigung und Bündelung der Materie in relativistischen Jets zu erforschen. Ein Forscherteam unter der Leitung von Silke Britzen vom MPIfR Bonn liefert Hinweise für die Verbindung von Akkretionsscheibe und Jet von M87 durch turbulente Prozesse und damit neue Erkenntnisse für das Problem des Ursprungs von astrophysikalischen Jets.

Supermassereiche Schwarze Löcher in den Zentren von Galaxien sind eines der rätselhaftesten Phänomene in der modernen Astrophysik. Ihr gewaltiger...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: Neu entdeckter Exoplanet könnte bester Kandidat für die Suche nach Leben sein

Supererde in bewohnbarer Zone um aktivitätsschwachen roten Zwergstern gefunden

Ein Exoplanet, der 40 Lichtjahre von der Erde entfernt einen roten Zwergstern umkreist, könnte in naher Zukunft der beste Ort sein, um außerhalb des...

Im Focus: Resistiver Schaltmechanismus aufgeklärt

Sie erlauben energiesparendes Schalten innerhalb von Nanosekunden, und die gespeicherten Informationen bleiben auf Dauer erhalten: ReRAM-Speicher gelten als Hoffnungsträger für die Datenspeicher der Zukunft.

Wie ReRAM-Zellen genau funktionieren, ist jedoch bisher nicht vollständig verstanden. Insbesondere die Details der ablaufenden chemischen Reaktionen geben den...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Smart-Data-Forschung auf dem Weg in die wirtschaftliche Praxis

21.04.2017 | Veranstaltungen

Baukultur: Mehr Qualität durch Gestaltungsbeiräte

21.04.2017 | Veranstaltungen

Licht - ein Werkzeug für die Laborbranche

20.04.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Intelligenter Werkstattwagen unterstützt Mensch in der Produktion

21.04.2017 | HANNOVER MESSE

Forschungszentrum Jülich auf der Hannover Messe 2017

21.04.2017 | HANNOVER MESSE

Smart-Data-Forschung auf dem Weg in die wirtschaftliche Praxis

21.04.2017 | Veranstaltungsnachrichten