Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Galaxienwachstum ohne Zusammenstöße

14.10.2010
Neue Beobachtungen am Very Large Telescope der ESO haben erstmals direkt nachgewiesen, dass junge Galaxien wachsen können, indem sie das kühles Gas aus ihrer Umgebung aufsaugen und als Ausgangsmaterial für die Bildung vieler neuer Sterne verwenden.

In den ersten Milliarden Jahren nach dem Urknall vergrößerten sich die Massen typischer Galaxien dramatisch; zu verstehen, wie und warum das passierte, ist eines der wichtigsten Ziele der modernen Astrophysik. Die Ergebnisse der neuen Untersuchungen erscheinen in der Ausgabe vom 14. Oktober der Fachzeitschrift Nature.

Die ersten Galaxien entstanden bereits, als das Universum weniger als eine Milliarde Jahre alt war. Sie waren damals freilich viel kleiner als die riesigen Sternsysteme (man denke an unsere Milchstraße), die wir heute sehen. Offenbar muss sich die durchschnittliche Größe einer Galaxie in der Zwischenzeit erhöht haben. Ein wichtiger Wachstumsmechanismus besteht darin, dass Galaxien miteinander zusammenstoßen und sich dann zu größeren Systemen vereinigen. Es gibt aber auch noch eine andere, „sanftere“ Methode.

Dieser anderen Art des Galaxienwachstums ist ein Team aus europäischen Astronomen nun mit dem Very Large Telescope der ESO nachgegangen: Junge Galaxien könnten wachsen, indem sie Ströme aus kühlem Wasserstoff- und Heliumgas einsaugen, die das frühe Universum durchziehen. Aus diesem Urmaterial bilden sich in den Galaxien dann neue Sterne. Junge Galaxien könnten demnach auf zwei verschiedene Arten größer werden: entweder durch die Verschmelzung mit anderen Galaxien oder durch diesen als Akkretion bezeichneten Prozess. Analog kann eine Firma expandieren, indem sie mit anderen Firmen fusioniert oder indem sie selbst zusätzliche Mitarbeiter einstellt.

Giovanni Cresci vom italienischen Osservatorio Astrofisico di Arcetri bei Florenz, der Leiter des Wissenschaftlerteams, fasst zusammen: “Die neuen VLT-Ergebnisse sind der erste direkte Nachweis dafür, dass die Akkretion von Gas auf frühe Galaxien tatsächlich stattgefunden hat, und dass sie ausreichte, um starke Sternentstehung und das Wachsen von massereichen Galaxien im jungen Universum anzuregen.” Diese Entdeckung ist ein wichtiger Schritt für unser Verständnis der Entwicklung des Universums vom Urknall bis heute.

Für ihre Untersuchungen hatten die Astronomen sich drei sehr weit entfernte Galaxien ausgesucht und überprüft, ob sich bei diesen Galaxien Hinweise auf aus der Umgebung einströmendes Gas und auf die daraus resultierende Entstehung neuer Sterne finden. Dabei wurde sorgfältig darauf geachtet, dass die als Beispiele ausgewählten Galaxien nicht durch Wechselwirkung mit anderen Galaxien gestört waren. Die Galaxien waren zu dem Zeitpunkt als das Licht, das wir heute von ihnen empfangen, ausgesendet wurde – etwa zwei Milliarden Jahre nach dem Urknall, was einer Rotverschiebung von z=3 entspricht – symmetrische, langsam rotierende Scheiben ähnlich wie die Milchstraße.

Im heutigen Universum finden sich schwere Elemente [1] vornehmlich in den Zentralbereichen der Galaxien. Als Crescis Team dagegen die ausgewählten fernen Galaxien mit dem SINFONI-Spektrografen [2] am VLT kartierte, stellten die Wissenschaftler mit Begeisterung fest, dass im Zentralbereich der Galaxien, in denen zahlreiche neue Sterne entstehen, in allen drei Fällen nur geringe Spuren schwerer Elemente zu finden waren. Dies deutet darauf hin, dass das Material, das die Sternentstehung befeuert, seinen Ursprung in dem metallarmen Gas aus der Umgebung der Galaxie hat. Man hat die jungen Galaxien damit praktisch auf frischer Tat dabei ertappt, wie sie frisches Gas akkretieren und zur Bildung neuer Sterne nutzen.

„Das SINFONI-Instrument am VLT hat neue MögIichkeiten zur Untersuchung der chemischen Eigenschaften von weit entfernten Galaxien eröffnet. Mit ihm kann man nicht nur Informationen in zwei räumlichen Dimensionen – also Bilder – gewinnen, sondern zusätzlich in einer dritten, spektralen Dimension. Auf diese Weise lassen sich Bewegungen innerhalb einer Galaxie und die chemische Zusammensetzung des interstellaren Gases messen“, sagt Cresci.

Endnoten:

[1] Abweichend vom Sprachgebrauch der Chemiker bezeichnen Astronomen alle Elemente schwerer als Wasserstoff und Helium als „schwere Elemente“. Das Gas, das das frühe Universum erfüllte, bestand fast ausschließlich aus Wasserstoff und Helium. Die ersten Generationen von Sternen erzeugten durch Kernfusion in ihrem Inneren aus diesem Urmaterial schwerere Elemente wie Sauerstoff, Stickstoff und Kohlenstoff. Die intensiven Teilchenströme der massereichen Sterne, sowie Supernovaexplosionen am Ende ihres Lebens, verteilten das mit schwereren Elementen angereicherte Material im interstellaren Raum, so dass der Anteil an schwereren Elementen in den Galaxien langsam anstieg.

[2] Astronomen können die „Fingerabdrücke“ der unterschiedlichen chemischen Elemente in entfernten Galaxien nachweisen, indem sie das schwache Licht der Galaxie mit leistungsstarken Teleskopen und Spektrografen in seine einzelnen Farben zerlegen. Auf diese Weise lässt sich auch der Anteil von schweren Elementen bestimmen. Mit dem SINFONI-Instrument am VLT lassen sich sogar für jeden Teil eines Objektes einzelne Spektren aufnehmen – und das mit einer Genauigkeit, die Studien wie die hier vorgestellte überhaupt erst ermöglicht. Daraus lässt sich eine Karte erstellen, aus der man den Anteil an schweren Elementen in verschiedenen Bereichen einer Galaxie ablesen und außerdem bestimmen kann, wo in der Galaxie besonders starke Sternentstehung stattfindet.

Weitere Informationen

Die hier vorgestellten Forschungsergebnisse erscheinen am 14. Oktober unter dem Titel „Gas accretion in distant galaxies as the origin of chemical abundance gradients“ in einem Artikel von Cresci et al. in der Fachzeitschrift Nature.

Die beteiligten Wissenschaftler sind G. Cresci, F. Mannucci und L. Magrini (Osservatorio Astrofisico di Arcetri, Italien), R. Maiolino (INAF, Osservatorio Astronomico di Roma, Italien), sowie A. Marconi und A. Gnerucci (Universitá di Firenze, Italien).

Mit dem Spectrograph for INtegral Field Observations in the Near Infrared (kurz SINFONI, wörtlich etwa "Räumlich aufgelöst arbeitender Spektrograf für das nahe Infrarot") werden spektroskopische Untersuchungen ausgedehnter Objekte im Nahinfrarotbereich durchgeführt. SINFONI besteht aus einem von der ESO entwickelten Modul für Adaptive Optik zum Ausgleich atmosphärischer Verzerrungen und aus dem Spektrografen SPIFFI (SPectrometer for Infrared Faint Field Imaging). SPIFFI wurde von der NOVA-Kollaboration niederländischer Universitäten und dem Max-Planck-Institut für extraterrestrische Physik in Garching konzipiert und gebaut.

Die Europäische Südsternwarte ESO (European Southern Observatory) ist die führende europäische Organisation für astronomische Forschung und das wissenschaftlich produktivste Observatorium der Welt. Getragen wird die Organisation durch ihre 14 Mitgliedsländer: Belgien, Dänemark, Deutschland, Finnland, Frankreich, Italien, die Niederlande, Österreich, Portugal, Spanien, Schweden, die Schweiz, die Tschechische Republik und das Vereinigte Königreich. Die ESO ermöglicht astronomische Spitzenforschung, indem sie leistungsfähige bodengebundene Teleskope entwirft, konstruiert und betreibt. Auch bei der Förderung internationaler Zusammenarbeit auf dem Gebiet der Astronomie spielt die Organisation eine maßgebliche Rolle. Die ESO betreibt drei weltweit einzigartige Beobachtungsstandorte in Nordchile: La Silla, Paranal und Chajnantor. Auf dem Paranal betreibt die ESO mit dem Very Large Telescope (VLT) das weltweit leistungsfähigste Observatorium für Beobachtungen im Bereich des sichtbaren Lichts, sowie VISTA, das größte Durchmusterungsteleskop der Welt. Die ESO ist der europäische Partner für den Aufbau des Antennenfelds ALMA, das größte astronomische Projekt überhaupt. Derzeit entwickelt die ESO das European Extremely Large Telescope (E-ELT) für Beobachtungen im Bereich des sichtbaren und Infrarotlichts, mit 42 Metern Spiegeldurchmesser ein Großteleskop der Extraklasse.

Die Übersetzungen von englischsprachigen ESO-Pressemitteilungen sind ein Service des ESO Science Outreach Network (ESON), eines internationalen Netzwerks für astronomische Öffentlichkeitsarbeit, in dem Wissenschaftler und Wissenschaftskommunikatoren aus allen ESO-Mitgliedsstaaten (und einigen weiteren Ländern) vertreten sind. Deutscher Knoten des Netzwerks ist das Haus der Astronomie am Max-Planck-Institut für Astronomie in Heidelberg.

Kontakte

Carolin Liefke
ESO Science Outreach Network - Haus der Astronomie
Deutschland
Tel: 06221 528 226
E-Mail: eson@mpia.de
Giovanni Cresci
Osservatorio Astrofisico di Arcetri
Italy
Tel: +39 055 275 2230
Cell: +39 335 680 3756
E-Mail: gcresci@arcetri.astro.it
Douglas Pierce-Price
ESO
Garching bei München, Germany
Tel: +49 89 3200 6759
E-Mail: dpiercep@eso.org
Richard Hook
ESO, La Silla, Paranal, E-ELT and Survey telescopes Public Information Officer
Garching, Germany
Tel: +49 89 3200 6655
E-Mail: rhook@eso.org

Carolin Liefke | ESO Science
Weitere Informationen:
http://www.eso.org/public/germany/news/eso1040/
http://www.eso.org/public/archives/releases/sciencepapers/eso1040/eso1040.pdf

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Quantenmechanik ist komplex genug – vorerst …
21.04.2017 | Universität Wien

nachricht Tief im Inneren von M87
20.04.2017 | Max-Planck-Institut für Radioastronomie

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Immunzellen helfen bei elektrischer Reizleitung im Herzen

Erstmals elektrische Kopplung von Muskelzellen und Makrophagen im Herzen nachgewiesen / Erkenntnisse könnten neue Therapieansätze bei Herzinfarkt und Herzrhythmus-Störungen ermöglichen / Publikation am 20. April 2017 in Cell

Makrophagen, auch Fresszellen genannt, sind Teil des Immunsystems und spielen eine wesentliche Rolle in der Abwehr von Krankheitserregern und bei der...

Im Focus: Tief im Inneren von M87

Die Galaxie M87 enthält ein supermassereiches Schwarzes Loch von sechs Milliarden Sonnenmassen im Zentrum. Ihr leuchtkräftiger Jet dominiert das beobachtete Spektrum über einen Frequenzbereich von 10 Größenordnungen. Aufgrund ihrer Nähe, des ausgeprägten Jets und des sehr massereichen Schwarzen Lochs stellt M87 ein ideales Laboratorium dar, um die Entstehung, Beschleunigung und Bündelung der Materie in relativistischen Jets zu erforschen. Ein Forscherteam unter der Leitung von Silke Britzen vom MPIfR Bonn liefert Hinweise für die Verbindung von Akkretionsscheibe und Jet von M87 durch turbulente Prozesse und damit neue Erkenntnisse für das Problem des Ursprungs von astrophysikalischen Jets.

Supermassereiche Schwarze Löcher in den Zentren von Galaxien sind eines der rätselhaftesten Phänomene in der modernen Astrophysik. Ihr gewaltiger...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: Neu entdeckter Exoplanet könnte bester Kandidat für die Suche nach Leben sein

Supererde in bewohnbarer Zone um aktivitätsschwachen roten Zwergstern gefunden

Ein Exoplanet, der 40 Lichtjahre von der Erde entfernt einen roten Zwergstern umkreist, könnte in naher Zukunft der beste Ort sein, um außerhalb des...

Im Focus: Resistiver Schaltmechanismus aufgeklärt

Sie erlauben energiesparendes Schalten innerhalb von Nanosekunden, und die gespeicherten Informationen bleiben auf Dauer erhalten: ReRAM-Speicher gelten als Hoffnungsträger für die Datenspeicher der Zukunft.

Wie ReRAM-Zellen genau funktionieren, ist jedoch bisher nicht vollständig verstanden. Insbesondere die Details der ablaufenden chemischen Reaktionen geben den...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Smart-Data-Forschung auf dem Weg in die wirtschaftliche Praxis

21.04.2017 | Veranstaltungen

Baukultur: Mehr Qualität durch Gestaltungsbeiräte

21.04.2017 | Veranstaltungen

Licht - ein Werkzeug für die Laborbranche

20.04.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Intelligenter Werkstattwagen unterstützt Mensch in der Produktion

21.04.2017 | HANNOVER MESSE

Forschungszentrum Jülich auf der Hannover Messe 2017

21.04.2017 | HANNOVER MESSE

Smart-Data-Forschung auf dem Weg in die wirtschaftliche Praxis

21.04.2017 | Veranstaltungsnachrichten