Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Galaxien aus dem Großrechner

08.05.2014

Neue Computersimulation zeigt die Entstehung von Galaxien mit bisher nicht erreichter Präzision. Astrophysiker aus Heidelberg, den USA und England bestätigen damit indirekt das Standardmodell der Kosmologie.

Galaxien enthalten typischerweise einige hundert Milliarden Sterne und zeigen vielfältige Formen und Größen. Ihre Entstehungsgeschichte ist eines der größten und komplexesten Probleme in der Astrophysik.


Verschiedene Ansichten der Illustris-Simulation auf unterschiedlichen Skalen. Den AREPO-Code für die Simulation schrieb der Astrophysiker Volker Springel (HITS).

Bild: Illustris


Bilder der simulierten Population von Galaxien, die entlang der klassischen Hubble-Sequenz („Stimmgabel“-Diagramm) für die morphologische Einteilung arrangiert sind.

Bild: Illustris

Wissenschaftlern am Heidelberger Institut für Theoretische Studien (HITS) ist es nun zusammen mit einem internationalem Team von Forschern am MIT, der Harvard University und weiteren Institutionen gelungen, die Physik der Galaxienentstehung in einem riesigen Raumbereich mit sehr hoher Genauigkeit zu simulieren.

Im Fachjournal Nature berichten sie, dass dabei erstmals ein realistischer Mix aus elliptischen Galaxien und Spiralgalaxien entstand. Die Simulation kann auch erklären, wie sich schwere Elemente (sogenannte „Metalle“) in neutralem Wasserstoffgas anreichern. Zudem sind die berechneten Galaxien im Raum so verteilt, wie es mit Teleskopen beobachtet wird. Die Datenmenge des „Illustris“ genannten Projekts umfasst mehr als 200 Terabyte und erforderte die Rechenkraft von mehr als 8000 Prozessoren für mehrere Monate.

Möglich wurde die Simulation durch den am HITS entwickelten AREPO-Code für kosmische Strukturentstehung und die Supercomputer CURIE in Frankreich und SuperMUC in Deutschland. Das von den Forschern erzeugte virtuelle Universum erlaubt eine Vielzahl neuartiger Voraussagen und damit eine umfassende Prüfung der kosmologischen Theorien zur Galaxienentstehung.

Das kosmologische Standardmodell basiert auf der Hypothese, dass das Universum von unbekannten Materie- und Energieformen dominiert wird. Zwar kennen wir die wahre physikalische Natur dieser Dunklen Materie und Dunklen Energie noch nicht, dennoch kann man ihre Konsequenzen mit Supercomputern nachvollziehen.

Bisherige Simulationen des Kosmos erzeugten dabei ein kosmisches Netz aus Materieklumpen, das der Verteilung der Galaxien zumindest ähnelte. Sie konnten aber keine elliptischen und Spiralgalaxien schaffen und die eng verzahnte Entwicklung von interstellarem Gas und den Sternen auf kleinen Skalen nachvollziehen. In dem ambitionierten „Illustris-Projekt“ sind die Kosmologen bei diesem Problem nun ein großes Stück weiter gekommen.

In der weltweit größten hydrodynamischen Simulation der Galaxienentstehung wurde eine Region mit einer Ausdehnung von etwa 350 Millionen Lichtjahren über einen Zeitraum von über 13 Milliarden Jahren verfolgt, beginnend 12 Millionen Jahre nach dem Urknall. Über diesen Zeitraum bilden sich aus der „Ursuppe“ aus Wasserstoff, Heliumgas und Dunkler Materie mit der Zeit immer größere Verklumpungen, zusammengetrieben durch die Wirkung der Schwerkraft.

Schließlich formen sich galaktische Sternsysteme, deren Wachstum durch ein komplexes Zusammenspiel von Strahlungsprozessen, hydrodynamischen Stoßwellen, turbulenten Strömungen, Sternentstehung, Supernova-Explosionen und der Energieeinspeisung wachsender superschwerer Schwarzer Löcher reguliert wird. Alle diese physikalischen Prozesse konnte das Illustris-Team in seiner neuen Supercomputer-Simulation mit dem Code AREPO berechnen. AREPO ist ein sogenannter „moving mesh code“, der das simulierte Universum nicht in ein starres Gitter einteilt, sondern bewegliche und veränderliche Gitter verwendet und so die Größen- und Masseunterschiede zwischen den einzelnen Galaxien besonders genau verarbeiten kann.

Die Hauptsimulation des Projekts hat dabei mehr als 18 Milliarden Teilchen und Zellen eingesetzt und überbrückt einen dynamischen Bereich von mehr als einer Million pro Raumdimension – um ähnlich kleine Details darzustellen, müsste ein Foto eine Million Megapixel groß sein. Der Speicherverbrauch der Illustris-Simulation von mehr als 25 Terabyte und das erzeugte Datenvolumen von mehr als 200 Terabyte setzen in der Kosmologie eine neue Rekordmarke. Diese Datenflut erlaubt es, die Entstehungsgeschichte von etwa 50.000 gut aufgelösten Galaxien im Detail zu studieren und theoretische Voraussagen für kosmische Strukturentstehung mit hoher Genauigkeit zu machen.

Die jahrelangen Vorbereitungen auf die Simulationen haben sich gelohnt: Erstmals kann das berühmte „Stimmgabel-Diagramm“ der Morphologie von Galaxien, das auf Edwin Hubble zurückgeht, reproduziert werden (siehe Abbildung 1). Dr. Mark Vogelsberger (MIT), Erstautor der in Nature erschienenen ersten Studie zu Illustris, meint: „Es ist bemerkenswert, dass die Anfangsbedingungen des Universums, die wir kurz nach dem Urknall beobachten, tatsächlich Galaxien von der richtigen Größe und Gestalt hervorbringen.“

Indirekt kann das als eine Bestätigung des Standardmodells der Kosmologie angesehen werden. „Endlich können wir die alten groben Modelle der Galaxienentstehung hinter uns lassen und nicht nur die Dunkle Materie präzise berechnen“, freut sich Prof. Volker Springel, Leiter der Forschungsgruppe „Theoretical Astrophysics“ am HITS und Autor des AREPO-Codes, und ergänzt: „Die Ergebnisse von Illustris markieren einen Umbruch in theoretischen Studien der Galaxienentstehung.“ Abbildung 2 zeigt einen Überblick über die astrophysikalischen Größen, die von diesem „Universum im Supercomputer“ vorausgesagt werden.

Pressekontakt:
Dr. Peter Saueressig
Public Relations
Heidelberger Institut für Theoretische Studien (HITS)
Tel.: +49-6221-533-245
Fax: +49-6221-533-298
peter.saueressig@h-its.org
www.h-its.org

Wissenschaftlicher Kontakt:
Prof. Dr. Volker Springel
Heidelberger Institut für Theoretische Studien (HITS) / Universität Heidelberg
Tel: +49-6221-533-241
volker.springel@h-its.org
www.h-its.org

Die wissenschaftliche Veröffentlichung im Original:
M. Vogelsberger, S. Genel, V. Springel, P. Torrey, D. Sijacki, D. Xu, G. Snyder, S. Bird, D. Nelson, L. Hernquist
“Properties of galaxies reproduced by a hydrodynamic simulation”, Nature, May 8th, 2014, doi:10.1038/nature13316

Weiterführende Links:
Web-Site des Illustris Projekts (mit weiteren Visualisierungen): http://www.illustris-project.org
Gauss Centre for Supercomputing http://www.gauss-centre.eu
SuperMUC am Leibniz Rechenzentrum http://www.lrz.de/services/compute/supermuc
AREPO-Code (V. Springel, 2010, MNRAS, 401, 791 http://mnras.oxfordjournals.org/content/401/2/791.full.pdf+html

Weitere Informationen:

http://www.h-its.org/deutsch/presse/pressemitteilungen.php?we_objectID=1079 HITS-Pressemitteilung
http://www.illustris-project.org Website des Illustris-Projekts mit weiterem Bild- und Videomaterial

Dr. Peter Saueressig | idw - Informationsdienst Wissenschaft

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Die „dunkle“ Seite der Spin-Physik
16.01.2018 | Technische Universität Berlin

nachricht Blick ins Universum
15.01.2018 | Georg-August-Universität Göttingen

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Forscher entschlüsseln zentrales Reaktionsprinzip von Metalloenzymen

Sogenannte vorverspannte Zustände beschleunigen auch photochemische Reaktionen

Was ermöglicht den schnellen Transfer von Elektronen, beispielsweise in der Photosynthese? Ein interdisziplinäres Forscherteam hat die Funktionsweise wichtiger...

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: Erstmalige präzise Messung der effektiven Ladung eines einzelnen Moleküls

Zum ersten Mal ist es Forschenden gelungen, die effektive elektrische Ladung eines einzelnen Moleküls in Lösung präzise zu messen. Dieser fundamentale Fortschritt einer vom SNF unterstützten Professorin könnte den Weg für die Entwicklung neuartiger medizinischer Diagnosegeräte ebnen.

Die elektrische Ladung ist eine der Kerneigenschaften, mit denen Moleküle miteinander in Wechselwirkung treten. Das Leben selber wäre ohne diese Eigenschaft...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Wie Metallstrukturen effektiv helfen, Knochen zu heilen

Forscher schaffen neue Generation von Knochenimplantaten

Wissenschaftler am Julius Wolff Institut, dem Berlin-Brandenburger Centrum für Regenerative Therapien und dem Centrum für Muskuloskeletale Chirurgie der...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

2. Hannoverscher Datenschutztag: Neuer Datenschutz im Mai – Viele Unternehmen nicht vorbereitet!

16.01.2018 | Veranstaltungen

Fachtagung analytica conference 2018

15.01.2018 | Veranstaltungen

Tagung „Elektronikkühlung - Wärmemanagement“ vom 06. - 07.03.2018 in Essen

11.01.2018 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Rittal mit neuem Onlineauftritt - Lösungskompetenz für alle IT-Szenarien

16.01.2018 | Unternehmensmeldung

Die „dunkle“ Seite der Spin-Physik

16.01.2018 | Physik Astronomie

Wetteranomalien verstärken Meereisschwund

16.01.2018 | Geowissenschaften