Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Galaxien als Linsen: Kosmische Linsen bestätigen schnelle Expansion des Universums

26.01.2017

Indem sie Galaxien als riesigen Gravitationslinsen nutzten, führte eine internationale Gruppe von Astronomen um Max Planck@TUM-Professorin Sherry Suyu eine unabhängige Messung der Hubble-Konstante durch, die beschreibt, wie schnell sich das Universum ausdehnt. Die neu gemessene Expansionsrate für das lokale Universum steht dabei im Einklang mit früheren Messungen. Erstaunlicherweise stimmen diese jedoch nicht mit Messungen aus dem frühen Universum überein. Dies deutet auf ein grundsätzliches Problem bei unserem Verständnis des Kosmos hin.

Die Hubble-Konstante, also die Geschwindigkeit mit der das Universum expandiert, ist eine der grundlegenden Größen, die unser Universum beschreiben. Eine Gruppe von Astronomen aus der H0LiCOW-Kooperation (H0 Lenses in COsmograil’s Wellspring) nutzte das Weltraumteleskop Hubble und weitere Teleskope im All und auf der Erde, um fünf Galaxien zu beobachten und diese für eine unabhängige Messung der Hubble-Konstante zu nutzen.


Das System HE0435-1223 (Mitte) gehört zu den fünf besten bisher entdeckten Linsenquasaren. Die Vordergrundgalaxie erzeugt vier nahezu gleichmäßig verteilte Bilder des entfernten Quasars.

NASA, ESA, Suyu (Max-Planck-Institut für Astrophysik), Auger (Universität Cambridge)


Montage der fünf von der H0LiCOW-Kooperation untersuchten Linsenquasare mit ihren Vordergrundgalaxien. Die Berechnungen zeigen, dass sich das Universum tatsächlich noch schneller ausdehnt als erwarte

NASA, ESA, Suyu (Max-Planck-Institut für Astrophysik), Auger (Universität Cambridge)

Die neue Messung ist völlig unabhängig von anderen Messungen der Hubble-Konstante im lokalen Universum, die sogenannte „Cepheidensterne“ und Supernovae als Referenzpunkte verwendeten, stimmt aber ausgezeichnet mit ihnen überein.

Angeführt wird das Konsortium von Sherry Suyu, die kürzlich vom Institute of Astronomy and Astrophysics der Academia Sinica (ASIAA) in Taipeh (Taiwan) nach Garching wechselte, wo sie jetzt im Max Planck@TUM-Programm Tenure Track-Professorin am Max-Planck-Institut für Astrophysik und der Technischen Universität München ist.

Eine neue Physik?

Der von Suyu und ihrem Team gemessene Wert sowie die mit Cepheiden und Supernovae gemessenen Werte unterscheiden sich jedoch von Messungen des Planck-Satelliten. Dabei gibt es einen wichtigen Unterschied: Planck maß die Hubble-Konstante für das frühe Universum durch Beobachtung des kosmischen Mikrowellenhintergrundes.

Während der Planck-Wert für die Hubble-Konstante mit unserem gegenwärtigen Verständnis des Kosmos übereinstimmt, stehen die Werte, die die Astronomen für das lokale Universum erhalten haben, im Widerspruch zum akzeptierten theoretischen Modell des Universums.

„Wir schaffen es inzwischen, die Expansionsrate des Universums in unterschiedlicher Weise mit einer solch hohen Genauigkeit zu messen, dass dabei auftretende Diskrepanzen möglicherweise auf eine neue Physik hinweisen, die über unsere gegenwärtige Kenntnis des Universums hinausgeht“, erläutert Suyu.

Mit Gravitationslinsen um die Ecke sehen

Die Ziele der Untersuchung waren massereiche Galaxien zwischen den Beobachtern auf der Erde und sehr entfernten Quasaren, unglaublich leuchtkräftigen Galaxienkernen. Das Licht der Quasare wird durch die als starke Gravitationslinse wirkende, riesige Masse der Galaxie gebeugt – ein Vorgang, den der Schweizer Astronom Fritz Zwicky bereits vor 80 Jahren vorhersagte. Dies erzeugt mehrere Bilder des Hintergrund-Quasars, einige werden zu Bögen verzerrt.

Da die Galaxien aber keine perfekt sphärischen Verzerrungen im Raum erzeugen und außerdem die Linsengalaxien und Quasare nicht perfekt hintereinander ausgerichtet sind, legt das Licht der verschiedenen Bilder des Hintergrundquasars etwas unterschiedliche Wege zurück, die auch unterschiedliche Längen aufweisen.

Die Helligkeit von Quasaren ändert sich mit der Zeit und so können die Astronomen sehen, dass die verschiedenen Bilder zu unterschiedlichen Zeiten aufflackern. Die Verzögerungen dazwischen sind dabei abhängig von der zurückgelegten Weglänge des Lichts und stehen in direktem Zusammenhang mit dem Wert der Hubble-Konstante.

„Unsere Methode ist die einfachste und direkteste Methode, um die Hubble-Konstante zu messen, da sie nur Geometrie und Relativitätstheorie verwendet, keine weiteren Annahmen“, erklärt Co-Autor Frédéric Courbin von der EPFL, Schweiz.

Die genauen Messungen der Zeitverzögerungen zwischen den einzelnen Bildern sowie Computermodelle erlaubten es dem Team, die Hubble-Konstante mit hoher Präzision zu ermitteln. Der Fehler beträgt nur 3,8 Prozent.

„Eine genaue Messung der Hubble-Konstante ist heutzutage einer der begehrtesten Preise in der kosmologischen Forschung“, betont Teammitglied Vivien Bonvin von der EPFL, Schweiz. Und Suyu fügt hinzu: „Die Hubble-Konstante ist für die moderne Astronomie von entscheidender Bedeutung, da sie bei der Beantwortung der Frage hilft, ob unser Bild des Universums – bestehend aus dunkler Energie, dunkler Materie und normaler Materie – korrekt ist oder ob wir etwas Grundsätzliches übersehen haben.“

Hintergrundinformationen:

Max Planck@TUM-Programm: Für hochqualifizierte Nachwuchswissenschaftlerinnen und -wissenschaftler bieten TUM und Max-Planck-Gesellschaft (MPG) einen kombinierten Karriereweg: Forschen als Max Planck Forschungsgruppenleiter mit einer Tenure-Track-Professur an der Technischen Universität München. Alle Informationen zur gemeinsamen Berufung durch TUM und MPG finden Sie hier: https://www.tum.de/die-tum/arbeiten-an-der-tum/berufungen/tum-faculty-tenure-tra...

Genutzte Instrumente: Die Studie nutzte neben dem Weltraumteleskop Hubble der NASA/ESA das Keck-Teleskop, das VLT der ESO, das Subaru-Teleskop, das Gemini-Teleskop, das Victor M. Blanco Teleskop, das Canada-France-Hawaii Teleskop sowie das Spitzer-Weltraumteleskop der NASA. Außerdem wurden Daten des Schweizer 1,2-Meter-Leonhard-Euler-Teleskops und des MPG/ESO 2,2-Meter-Teleskops in Chile verwendet.

Hubble-Konstante: Der vom H0LiCOW-Team bestimmte Wert für die Hubble-Konstante beträgt 71,9±2,7 Kilometer pro Sekunde pro Megaparsec. Wissenschaftler konnten im Jahr 2016 mit dem Hubble Weltraumteleskop einen Wert von 73,24±1,74 Kilometer pro Sekunde pro Megaparsec messen. Der Planck-Satellit bestimmte 2015 die Konstante mit der bisher höchsten Präzision und einem Wert von 66,93±0,62 Kilometer pro Sekunde pro Megaparsec.

Publikationen:

Diese Studie wurde in einer Reihe von Artikeln veröffentlich, die im Journal MNRAS erscheinen werden:

1. Suyu et al.; H0LiCOW I. Program Overview
Submitted to MNRAS, https://arxiv.org/abs/1607.00017

2. Sluse et al.; H0LiCOW II. Spectroscopic survey and galaxy-group identification of the strong gravitational lens system HE0435-1223
Submitted to MNRAS, https://arxiv.org/abs/1607.00382

3. Rusu et al.; H0LiCOW III. Quantifying the effect of mass along the line of sight to the gravitational lens HE 0435-1223 through weighted galaxy counts
Submitted to MNRAS, https://arxiv.org/abs/1607.01047

4. Wong et al.; H0LiCOW IV. Lens mass model of HE 0435-1223 and blind measurement of its time-delay distance for cosmology
Accepted by MNRAS, https://arxiv.org/abs/1607.01403
DOI: https://dx.doi.org/10.1093/mnras/stw3006

5. Bonvin et al.; H0LiCOW V. New COSMOGRAIL time delays of HE 0435−1223: H0 to 3.8% precision from strong lensing in a flat ΛCDM model
Accepted by MNRAS, https://arxiv.org/abs/1607.01790
DOI: https://dx.doi.org/10.1093/mnras/stw3077

6. Ding et al.; H0LiCOW VI. Testing the fidelity of lensed quasar host galaxy reconstruction
MNRAS (2016) 465 (4): 4634-4649, https://arxiv.org/abs/1610.08504
DOI: https://dx.doi.org/10.1093/mnras/stw3078

Kontakt:

Sherry Suyu
Max-Planck-Institut für Astrophysik
Garching, Deutschland
Tel.: +49 89 30000 2015
E-Mail: suyu@mpa-garching.mpg.de

Hannelore Hämmerle
Pressesprecherin
Max-Planck-Institut für Astrophysik
Garching, Deutschland
Tel.: +49 89 30000 3980
E-Mail: pr@mpa-garching.mpg.de

Stefan Hilbert
Junior Research Group Leader
Excellence Cluster Universe
Tel.: +49 89 35831 7148
E-Mail: stefan.hilbert@universe-cluster.de

Das internationale Team besteht aus: S. H. Suyu (Max Planck Institute for Astrophysics, Germany; Academia Sinica Institute of Astronomy and Astrophysics, Taiwan; Technical University of Munich, Germany), V. Bonvin (Laboratory of Astrophysics, EPFL, Switzerland), F. Courbin (Laboratory of Astrophysics, EPFL, Switzerland), C. D. Fassnacht (University of California, Davis, USA), C. E. Rusu (University of California, Davis, USA), D. Sluse (STAR Institute, Belgium), T. Treu (University of California, Los Angeles, USA), K. C. Wong (National Astronomical Observatory of Japan, Japan; Academia Sinica Institute of Astronomy and Astrophysics, Taiwan), M. W. Auger (University of Cambridge, UK), X. Ding (University of California, Los Angeles, USA; Beijing Normal University, China), S. Hilbert (Exzellenzcluster Universe, Germany; Ludwig-Maximilians-Universität, Munich, Germany), P. J. Marshall (Stanford University, USA), N. Rumbaugh (University of California, Davis, USA), A. Sonnenfeld (Kavli Institute for the Physics and Mathematics of the Universe, the University of Tokyo), M. Tewes (Argelander-Institut für Astronomie, Germany), O. Tihhonova (Laboratory of Astrophysics, EPFL, Switzerland), A. Agnello (ESO, Garching, Germany), R. D. Blandford (Stanford University, USA), G. C.-F. Chen (University of California, Davis, USA; Academia Sinica Institute of Astronomy and Astrophysics, Taiwan), T. Collett (University of Portsmouth, UK), L. V. E. Koopmans (University of Groningen, The Netherlands), K. Liao (University of California, Los Angeles, USA), G. Meylan (Laboratory of Astrophysics, EPFL, Switzerland), C. Spiniello (INAF – Osservatorio Astronomico di Capodimonte, Italy; Max Planck Institute for Astrophysics, Garching, Germany) and A. Yıldırım (Max Planck Institute for Astrophysics, Garching, Germany)

Weitere Informationen:

http://www.mpa-garching.mpg.de/407852/news20170126 Presseinformation und weitere Informationen sowie Bildmaterial
http://shsuyu.github.io/H0LiCOW/site/ Website des H0LiCOW-Konsortiums
https://www.spacetelescope.org/news/heic1702/ Presseinformation (EN) und weiteres Bildmaterial (verwendbar nach Ablauf der Sperrfrist)

Dr. Ulrich Marsch | Technische Universität München

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Ultrakalte chemische Prozesse: Physikern gelingt beispiellose Vermessung auf Quantenniveau
17.11.2017 | Universität Ulm

nachricht Zwei verdächtigte Sterne unschuldig an mysteriösem Antiteilchen-Überschuss
17.11.2017 | Max-Planck-Institut für Kernphysik

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Ultrakalte chemische Prozesse: Physikern gelingt beispiellose Vermessung auf Quantenniveau

Wissenschaftler um den Ulmer Physikprofessor Johannes Hecker Denschlag haben chemische Prozesse mit einer beispiellosen Auflösung auf Quantenniveau vermessen. Bei ihrer wissenschaftlichen Arbeit kombinierten die Forscher Theorie und Experiment und können so erstmals die Produktzustandsverteilung über alle Quantenzustände hinweg - unmittelbar nach der Molekülbildung - nachvollziehen. Die Forscher haben ihre Erkenntnisse in der renommierten Fachzeitschrift "Science" publiziert. Durch die Ergebnisse wird ein tieferes Verständnis zunehmend komplexer chemischer Reaktionen möglich, das zukünftig genutzt werden kann, um Reaktionsprozesse auf Quantenniveau zu steuern.

Einer deutsch-amerikanischen Forschergruppe ist es gelungen, chemische Prozesse mit einer nie dagewesenen Auflösung auf Quantenniveau zu vermessen. Dadurch...

Im Focus: Leoniden 2017: Sternschnuppen im Anflug?

Gemeinsame Pressemitteilung der Vereinigung der Sternfreunde und des Hauses der Astronomie in Heidelberg

Die Sternschnuppen der Leoniden sind in diesem Jahr gut zu beobachten, da kein Mondlicht stört. Experten sagen für die Nächte vom 16. auf den 17. und vom 17....

Im Focus: «Kosmische Schlange» lässt die Struktur von fernen Galaxien erkennen

Die Entstehung von Sternen in fernen Galaxien ist noch weitgehend unerforscht. Astronomen der Universität Genf konnten nun erstmals ein sechs Milliarden Lichtjahre entferntes Sternensystem genauer beobachten – und damit frühere Simulationen der Universität Zürich stützen. Ein spezieller Effekt ermöglicht mehrfach reflektierte Bilder, die sich wie eine Schlange durch den Kosmos ziehen.

Heute wissen Astronomen ziemlich genau, wie sich Sterne in der jüngsten kosmischen Vergangenheit gebildet haben. Aber gelten diese Gesetzmässigkeiten auch für...

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Pflanzenvielfalt von Wäldern aus der Luft abbilden

Produktivität und Stabilität von Waldökosystemen hängen stark von der funktionalen Vielfalt der Pflanzengemeinschaften ab. UZH-Forschenden gelang es, die Pflanzenvielfalt von Wäldern durch Fernerkundung mit Flugzeugen in verschiedenen Massstäben zu messen und zu kartieren – von einzelnen Bäumen bis hin zu ganzen Artengemeinschaften. Die neue Methode ebnet den Weg, um zukünftig die globale Pflanzendiversität aus der Luft und aus dem All zu überwachen.

Ökologische Studien zeigen, dass die Pflanzenvielfalt zentral ist für das Funktionieren von Ökosys-temen. Wälder mit einer höheren funktionalen Vielfalt –...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Technologievorsprung durch Textiltechnik

17.11.2017 | Veranstaltungen

Roboter für ein gesundes Altern: „European Robotics Week 2017“ an der Frankfurt UAS

17.11.2017 | Veranstaltungen

Börse für Zukunftstechnologien – Leichtbautag Stade bringt Unternehmen branchenübergreifend zusammen

17.11.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Technologievorsprung durch Textiltechnik

17.11.2017 | Veranstaltungsnachrichten

IHP präsentiert sich auf der productronica 2017

17.11.2017 | Messenachrichten

Roboter schafft den Salto rückwärts

17.11.2017 | Innovative Produkte