Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Eine Galaxie tankt auf

02.10.2013
Astronomen beobachten, wie Materie in ein fernes Milchstraßensystem strömt

Astronomen haben kalte Materieströme von Wasserstoff aus der Frühzeit des Universums beobachtet, die in eine ferne Galaxie fließen und dort als Grundstoff für die Entstehung neuer Sterne dienen.


Tankstelle: Das Bild, Ergebnis einer Supercomputer-Simulation, zeigt eine Galaxie (Mitte), in die kalte Materieströme von Gas fließen. Einer der Materieflüsse wird von hinten von einem entfernten Quasar beleuchtet (unten links, nachträglich ebenso wie der Sternenhintergrund von Hand hinzugefügt).

© MPIA (G. Stinson / A. V. Macciò)

Solche Ströme sind ein wichtiger Bestandteil von Modellen, die eine Ära intensiver Sternentstehung vor rund zehn Milliarden Jahren erklären sollen. Das Team um Neil Crighton (Max-Planck-Institut für Astronomie und Swinburne University of Technology) nutzte einen Zufall: einen fernen, hellen Quasar, der das Gas wie eine Art kosmischer Scheinwerfer von hinten anleuchtet.

Bei ihrer Geburt haben Galaxien wie unsere Milchstraße offenbar große Mengen an kosmischer Materie aus riesigen Reservoirs von Wasserstoff an sich gezogen. Dieser Wasserstoff treibt seit der Frühzeit des Universums in den Weiten des intergalaktischen Raums. Vor rund zehn Milliarden Jahren, als der Kosmos nur rund ein Fünftel so alt war wie heute, produzierten die damaligen Protogalaxien massenweise Sterne – mehr als hundert Mal so viel wie es für heutige Galaxien typisch ist. Dafür musste hinreichend Nachschub an Gas existieren.

Über die vergangenen zehn Jahre hinweg haben Computersimulationen solcher Szenarien große Fortschritte gemacht. Sie geben Auskunft darüber, wie Galaxien an den „Treibstoff“ für ihre Sternproduktion gelangen dürften: Gas fließt demnach über schmale kalte Materieströme in die Milchstraßensysteme. Wie Rinnsale aus der Schneeschmelze, die einen Bergsee speisen, wird auf diese Weise immer wieder neues Rohmaterial angeliefert.

Zu überprüfen, ob dieses Szenario der Wirklichkeit entspricht, ist alles andere als einfach. Entsprechendes Gas in den Randregionen und der unmittelbaren Umgebung einer Galaxie ist viel zu stark verdünnt, als dass es nachweisbare Mengen von Licht aussenden würde. Astronomen suchen daher systematisch nach einer ganz bestimmten Sorte von kosmischem Zufall, bei dem Quasare eine Rolle spielen.

Diese Kraftwerke sind Galaxien in einem kurzlebigen Zwischenstadium ihrer Entwicklung. Angetrieben durch Prozesse rund um das supermassereiche schwarze Loch im Zentrum, wird ein solcher Quasar zwischenzeitlich zu einem der hellsten Objekte im Universum überhaupt.

In sehr seltenen Fällen steht ein Quasar aus Sicht eines irdischen Beobachters zufällig direkt hinter einer der gesuchten intergalaktischen Gaswolken. Dann verschluckt das Gas bestimmte Anteile des Quasarlichts – und im Spektrum erscheinen sogenannten Absorptionslinien. Muster und Formen dieser Linien geben Aufschluss über Dichte, chemische Zusammensetzung und Temperatur des Gases.

Auf diese Weise hat jetzt ein Team unter der Leitung von Neil Crighton vom Max-Planck-Institut für Astronomie (inzwischen an der Swinburne University of Technology) das bisher überzeugendste Beispiel für Gas aus einem der intergalaktischen Reservoirs erbracht, das in eine Galaxie fließt. Die Galaxie mit der Katalognummer Q1442-MD50 ist so weit von uns entfernt, dass ihr Licht elf Milliarden Jahre benötigt hat, um uns zu erreichen.

Das einströmende Gas befindet sich, nach galaktischen Maßstäben beurteilt, direkt in der Nachbarschaft, nämlich nur 190000 Lichtjahre von der Galaxie entfernt. Es verrät seine Anwesenheit, indem es einen Teil des Lichts des noch deutlich weiter entfernten Quasars QSO J1444535+291905 absorbiert.

Crighton und seine Kollegen haben in der Gaswolke zudem Spuren von schwerem Wasserstoff nachgewiesen - von Deuterium, in dessen Kern neben dem Proton ein Neutron sitzt. Die Atomkerne dieser und einiger weiterer Sorten von Elementen entstanden nach heutigem Wissen wenige Minuten nach dem Urknall. Alle schwereren Elemente, etwa Kohlenstoff oder Stickstoff, bildeten sich erst im Laufe der Zeit, insbesondere im heißen Innern von Sternen. Deuterium allerdings kann in Sternen nicht erzeugt werden. Ja, es würde sogar unter den dort herrschenden Bedingungen zerstört.

Die Anwesenheit von Deuterium zeigt daher an, dass es sich nicht um eine Wolke von Gas handelt, die jemals Bestandteil eines Sterns war, sondern offenbar um urtümliches Gas: um Materie aus den großen Wasserstoffreservoirs, die seit der Urknallphase chemisch so gut wie unverändert geblieben sind.

„Das ist nicht das erste Mal, das Astronomen mithilfe eines Quasars Gas in der Nachbarschaft einer fernen Galaxie gefunden haben“, sagt Neil Crighton. Aber es sei das erste Mal, dass alle Teile des Puzzles zusammenpassen. „In der Galaxie, die wir beobachtet haben, entstehen gerade jetzt enorme Mengen von Sternen. Und für das Gas konnten wir zeigen, dass es sich tatsächlich um urtümliches Gas aus der Zeit direkt nach dem Urknall handelt.“

Die Entdeckung des Systems gelang im Rahmen einer großangelegten Durchmusterung, bei der die Forscher gezielt nach Quasaren suchen, die am Himmel in unmittelbarer Nähe von nähergelegenen Galaxien stehen. Koordiniert wird die Durchmusterung von Joseph Hennawi, der am Max-Planck-Institut für Astronomie die ENIGMA-Forschungsgruppe leitet.

„Weil diese Entdeckung Teil einer systematischen Suche ist, können wir daraus schließen, dass derartige kalte Materieströme vergleichsweise häufig sind“, sagt Hennawi. „Wir haben nämlich nur zwölf Quasar-Galaxien-Paare ausfindig machen müssen, um auf dieses Beispiel zu stoßen.“ Das entspreche grob den Vorhersagen der Supercomputer-Simulationen.

Die Astronomen wollen nun etwa zehn ähnliche Beispiele für solche kalten Gasströme finden. Das würde noch wesentlich genauere Vergleiche der Beobachtungen mit den Vorhersagen numerischer Simulationen erlauben. Für die Suche nach weiteren Quasar-Galaxienpaaren nutzen die Forscher das Large Binocular Telescope in Arizona und das Very Large Telescope der Europäischen Südsternwarte (ESO) in Chile.

Ansprechpartner

Dr. Neil H. M. Crighton
Swinburne University of Technology, Australien
Telefon: +61 3 9214-5536
E-Mail: ncrighton@­swin.edu.au
Dr. Joseph F. Hennawi
Max-Planck-Institut für Astronomie, Heidelberg
Telefon: +49 6221 528-263
E-Mail: joe@­mpia.de
Dr. Markus Pössel
Öffentlichkeitsarbeit
Max-Planck-Institut für Astronomie, Heidelberg
Telefon: +49 6221 528-261
E-Mail: pr@­mpia.de
Originalpublikation
N. H. M. Crighton et al.
Metal-Poor, Cool Gas in the Circumgalactic Medium of a z = 2.4 Star-Forming Galaxy: Direct Evidence for Cold Accretion?

Astrophysical Journal Letters

Dr. Markus Pössel | Max-Planck-Institut
Weitere Informationen:
http://www.mpg.de/7538586/galaxie_materiestroeme

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Raumschrott im Fokus
20.05.2018 | Universität Bern

nachricht Countdown für Kilogramm, Kelvin und Co.
18.05.2018 | Physikalisch-Technische Bundesanstalt (PTB)

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Bose-Einstein-Kondensat im Riesenatom - Universität Stuttgart untersucht exotisches Quantenobjekt

Passt eine ultrakalte Wolke aus zehntausenden Rubidium-Atomen in ein einzelnes Riesenatom? Forscherinnen und Forschern am 5. Physikalischen Institut der Universität Stuttgart ist dies erstmals gelungen. Sie zeigten einen ganz neuen Ansatz, die Wechselwirkung von geladenen Kernen mit neutralen Atomen bei weitaus niedrigeren Temperaturen zu untersuchen, als es bisher möglich war. Dies könnte einen wichtigen Schritt darstellen, um in Zukunft quantenmechanische Effekte in der Atom-Ion Wechselwirkung zu studieren. Das renommierte Fachjournal Physical Review Letters und das populärwissenschaftliche Begleitjournal Physics berichteten darüber.*)

In dem Experiment regten die Forscherinnen und Forscher ein Elektron eines einzelnen Atoms in einem Bose-Einstein-Kondensat mit Laserstrahlen in einen riesigen...

Im Focus: Algorithmen für die Leberchirurgie – weltweit sicherer operieren

Die Leber durchlaufen vier komplex verwobene Gefäßsysteme. Die chirurgische Entfernung von Tumoren ist daher oft eine schwierige Aufgabe. Das Fraunhofer-Institut für Bildgestützte Medizin MEVIS hat Algorithmen entwickelt, die die Bilddaten von Patienten analysieren und chirurgische Risiken berechnen. Leberkrebsoperationen werden damit besser planbar und sicherer.

Jährlich erkranken weltweit 750.000 Menschen neu an Leberkrebs, viele weitere entwickeln Lebermetastasen aufgrund anderer Krebserkrankungen. Ein chirurgischer...

Im Focus: Positronen leuchten besser

Leuchtstoffe werden schon lange benutzt, im Alltag zum Beispiel im Bildschirm von Fernsehgeräten oder in PC-Monitoren, in der Wissenschaft zum Untersuchen von Plasmen, Teilchen- oder Antiteilchenstrahlen. Gleich ob Teilchen oder Antiteilchen – treffen sie auf einen Leuchtstoff auf, regen sie ihn zum Lumineszieren an. Unbekannt war jedoch bisher, dass die Lichtausbeute mit Elektronen wesentlich niedriger ist als mit Positronen, ihren Antiteilchen. Dies hat Dr. Eve Stenson im Max-Planck-Institut für Plasmaphysik (IPP) in Garching und Greifswald jetzt beim Vorbereiten von Experimenten mit Materie-Antimaterie-Plasmen entdeckt.

„Wäre Antimaterie nicht so schwierig herzustellen, könnte man auf eine Ära hochleuchtender Niederspannungs-Displays hoffen, in der die Leuchtschirme nicht von...

Im Focus: Erklärung für rätselhafte Quantenoszillationen gefunden

Sogenannte Quanten-Vielteilchen-„Scars“ lassen Quantensysteme länger außerhalb des Gleichgewichtszustandes verweilen. Studie wurde in Nature Physics veröffentlicht

Forschern der Harvard Universität und des MIT war es vor kurzem gelungen, eine Rekordzahl von 53 Atomen einzufangen und ihren Quantenzustand einzeln zu...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

48V im Fokus!

21.05.2018 | Veranstaltungen

„Data Science“ – Theorie und Anwendung: Internationale Tagung unter Leitung der Uni Paderborn

18.05.2018 | Veranstaltungen

Visual-Computing an Bord der MS Wissenschaft

17.05.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

48V im Fokus!

21.05.2018 | Veranstaltungsnachrichten

Bose-Einstein-Kondensat im Riesenatom - Universität Stuttgart untersucht exotisches Quantenobjekt

18.05.2018 | Physik Astronomie

Countdown für Kilogramm, Kelvin und Co.

18.05.2018 | Physik Astronomie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics