Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Galaktisches Gas steigert die Geburtenrate

11.02.2010
Wissenschaftler erklären, weshalb in jungen Galaxien besonders viele Sterne entstanden sind

Sterne entstehen aus gigantischen Gaswolken innerhalb von Galaxien. Die Geburtenrate hat sich aber im Lauf der Zeit verändert. So kamen im jungen Universum deutlich mehr Sterne zur Welt. Jetzt haben Forscher aus dem Max-Planck-Institut für extraterrestrische Physik zusammen mit Kollegen eine einleuchtende Erklärung dafür gefunden: Normale Galaxien enthielten wenige Milliarden Jahre nach dem Urknall fünf- bis zehnmal mehr Gas als heutige Galaxien - und stellten damit eine größere Menge an Rohstoffen für die Sternentstehung bereit (Nature, 11. Februar 2010).


Zwei Ansichten einer typischen Galaxie, 5,5 Milliarden Jahre nach dem Urknall. Links eine Aufnahme des Hubble-Weltraumteleskops im optischen Licht, rechts die Kombination eines Bildes des IRAM-Interferometers (rot/gelb) mit einem Foto im optischen Bereich (grau). Diese Beobachtungen zeigen, dass die Masse des kalten Gases in der galaktischen Scheibe etwa zehnmal größer ist als in heutigen Galaxien.

Bild: MPE / IRAM

Zum ersten Mal war es uns möglich, das kalte molekulare Gas in normalen Galaxien nachzuweisen und die Milchstraßensysteme so abzubilden, wie sie kurz nach dem Urknall für massereiche Galaxienpopulationen typisch waren", sagt Linda Tacconi vom Max-Planck-Institut für extraterrestrische Physik, Erstautorin des Artikels in der Zeitschrift Nature.

Die Beobachtungen erlauben einen ersten direkten Blick auf Galaxien - genauer gesagt auf das kalte Gas in diesen Galaxien, nur drei bis fünf Milliarden Jahre nach dem Urknall. Damals haben diese Milchstraßensysteme anscheinend mehr oder weniger kontinuierlich Sterne gebildet, allerdings mit einer mindestens zehnmal höheren Rate als in ähnlich massereichen Galaxien im heutigen Universum.

Die grundlegende Frage lautet nun, ob diese höhere Sternentstehungsrate durch eine größere Menge an kaltem, molekularem Gas - dem Rohstoff für junge Sterne - hervorgerufen wurde. Oder ob die Sternengeburt im jungen Universum einfach viel effizienter verlief.

Seit etwa zehn Jahren entwerfen Astrophysiker ein allgemeines Bild davon, wie sich Galaxien bilden und entwickeln, seit das Universum wenige Milliarden Jahre alt war. Danach sammelte sich unter dem Einfluss der mysteriösen Dunklen Materie abkühlendes Gas, ähnlich wie Regenwasser in Pfützen. Mit der Zeit strömte Gas von diesen "Materiepfützen" zu Protogalaxien; Kollisionen und Verschmelzungen dieser Systeme führten dann nach und nach zum hierarchischen Anwachsen der Galaxienmasse.

Detaillierte Beobachtungen des kalten Gases, seiner Verteilung und Dynamik, sind deshalb von äußerster Wichtigkeit. Denn nur so lassen sich die komplexen Mechanismen verstehen, die dafür sorgten, dass sich diese ersten Protogalaxien zu modernen Galaxien wie unserer Milchstraße entwickelten.

Eine groß angelegte Studie von entfernten, leuchtkräftigen und massereichen Galaxien mit dem IRAM-Interferometer auf dem Plateau du Bure (1) brachte jetzt Licht ins Dunkel: Zum ersten Mal gelang es, den Rohstoff für die Sternentstehung direkt zu beobachten.

Weil die Empfindlichkeit der Messgeräte vor kurzem deutlich verbessert wurde, konnten die Astronomen die Eigenschaften von kaltem Gas anhand einer Spektrallinie des Kohlenstoffmonoxid-Moleküls in normalen, nicht übermäßig leuchtkräftigen Galaxien systematisch vermessen - und zwar zu einer Zeit, das das Weltall nur etwa 40 beziehungsweise 24 Prozent seines jetzigen Alters besaß. Frühere Beobachtungen beschränkten sich meist auf seltene, sehr leuchtstarke Objekte wie etwa verschmelzende Galaxien oder Quasare, also die Kerne von jungen, aktiven Galaxien.

"Wir haben herausgefunden, dass massereiche normale Galaxien bei einer Rotverschiebung von 1,2 und 2,3 etwa fünf- bis zehnmal mehr Gas enthalten, als wir im nahen Universum sehen", sagt Linda Tacconi (2). Diese Galaxien zeigen über lange Zeit eine hohe Sternentstehungsrate. Das heißt: Aus dem Halo aus Dunkler Materie muss kontinuierlich Gas nachströmen - genau so, wie es kürzlich aufgestellte Theorien vorhersagen. Ein weiteres wichtiges Ergebnis dieser Beobachtungen sind die ersten räumlich aufgelösten Bilder der Verteilung und Bewegung des kalten Gases in mehreren Galaxien.

"Die Messungen geben uns entscheidende Hinweise und Randbedingungen für die nächste Generation von theoretischen Modellen, mit denen wir die frühen Phasen der Galaxienentwicklung genauer untersuchen wollen", sagt Andreas Burkert, Experte für Sternentstehung und Galaxienentwicklung am Garchinger Exzellenzcluster Universe. "Letztlich werden uns diese Arbeiten auch dabei helfen, den Ursprung und die Entwicklung unserer Milchstraße zu verstehen."

(1) Das Interferometer des Radioastronomischen Instituts im Millimeterbereich (IRAM) am Plateau de Bure befindet sich auf einer Höhe von 2600 Metern in den südlichen, französischen Alpen nähe Gap. Das PdBI ist derzeit das leistungsfähigste Millimeter-Interferometer der Welt und das einzige, das die schwache Emissionslinie von CO-Molekülen - dem besten Indikator für kaltes Gas - in weit entfernten Galaxien nachweisen kann. Das Interferometer besteht aus sechs Teleskopen mit je 15 Meter Durchmesser, die alle mit einem extrem empfindlichen Heterodyn-Strahlenmessgerät zum Nachweis von Millimeter-Wellenlängen ausgestattet sind. IRAM wird partnerschaftlich von der Max-Planck-Gesellschaft in Deutschland, INSU/CNRS in Frankreich und IGN in Spanien betrieben.

(2) Die Rotverschiebung ist ein Maß für die Entfernung und damit für das Alter eines Objekts. Hat eine Galaxie etwa eine Rotverschiebung von 2,3, sehen wir sie in einer Epoche, die einem Weltalter von 24 Prozent des heutigen entspricht, also gut drei Milliarden Jahre nach dem Urknall.

[HOR / HAE]

Originalveröffentlichung:

L. J. Tacconi et al.
High molecular gas fractions in normal massive star forming galaxies in the young Universe

Nature, 11. Februar 2010

Weitere Informationen erhalten Sie von:

Dr. Hannelore Hämmerle (Pressesprecherin)
Max-Planck-Institut für extraterrestrische Physik, Garching
Tel.: Tel.: +49 89 30000-3980
E-Mail: hannelore.haemmerle@mpe.mpg.de
Prof. Dr. Reinhard Genzel
Max-Planck-Institut für extraterrestrische Physik, Garching
Tel.: +49 89 30000-3280
E-Mail: genzel@mpe.mpg.de

Barbara Abrell | Max-Planck-Gesellschaft
Weitere Informationen:
http://www.mpg.de

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Biophysik - Blitzlicht aus der Nanowelt
24.04.2018 | Ludwig-Maximilians-Universität München

nachricht Moleküle brillant beleuchtet
23.04.2018 | Max-Planck-Institut für Quantenoptik

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: BAM@Hannover Messe: Innovatives 3D-Druckverfahren für die Raumfahrt

Auf der Hannover Messe 2018 präsentiert die Bundesanstalt für Materialforschung und -prüfung (BAM), wie Astronauten in Zukunft Werkzeug oder Ersatzteile per 3D-Druck in der Schwerelosigkeit selbst herstellen können. So können Gewicht und damit auch Transportkosten für Weltraummissionen deutlich reduziert werden. Besucherinnen und Besucher können das innovative additive Fertigungsverfahren auf der Messe live erleben.

Pulverbasierte additive Fertigung unter Schwerelosigkeit heißt das Projekt, bei dem ein Bauteil durch Aufbringen von Pulverschichten und selektivem...

Im Focus: BAM@Hannover Messe: innovative 3D printing method for space flight

At the Hannover Messe 2018, the Bundesanstalt für Materialforschung und-prüfung (BAM) will show how, in the future, astronauts could produce their own tools or spare parts in zero gravity using 3D printing. This will reduce, weight and transport costs for space missions. Visitors can experience the innovative additive manufacturing process live at the fair.

Powder-based additive manufacturing in zero gravity is the name of the project in which a component is produced by applying metallic powder layers and then...

Im Focus: IWS-Ingenieure formen moderne Alu-Bauteile für zukünftige Flugzeuge

Mit Unterdruck zum Leichtbau-Flugzeug

Ingenieure des Fraunhofer-Instituts für Werkstoff- und Strahltechnik (IWS) in Dresden haben in Kooperation mit Industriepartnern ein innovatives Verfahren...

Im Focus: Moleküle brillant beleuchtet

Physiker des Labors für Attosekundenphysik, der Ludwig-Maximilians-Universität und des Max-Planck-Instituts für Quantenoptik haben eine leistungsstarke Lichtquelle entwickelt, die ultrakurze Pulse über einen Großteil des mittleren Infrarot-Wellenlängenbereichs generiert. Die Wissenschaftler versprechen sich von dieser Technologie eine Vielzahl von Anwendungen, unter anderem im Bereich der Krebsfrüherkennung.

Moleküle sind die Grundelemente des Lebens. Auch wir Menschen bestehen aus ihnen. Sie steuern unseren Biorhythmus, zeigen aber auch an, wenn dieser erkrankt...

Im Focus: Molecules Brilliantly Illuminated

Physicists at the Laboratory for Attosecond Physics, which is jointly run by Ludwig-Maximilians-Universität and the Max Planck Institute of Quantum Optics, have developed a high-power laser system that generates ultrashort pulses of light covering a large share of the mid-infrared spectrum. The researchers envisage a wide range of applications for the technology – in the early diagnosis of cancer, for instance.

Molecules are the building blocks of life. Like all other organisms, we are made of them. They control our biorhythm, and they can also reflect our state of...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

infernum-Tag 2018: Digitalisierung und Nachhaltigkeit

24.04.2018 | Veranstaltungen

Fraunhofer eröffnet Community zur Entwicklung von Anwendungen und Technologien für die Industrie 4.0

23.04.2018 | Veranstaltungen

Mars Sample Return – Wann kommen die ersten Gesteinsproben vom Roten Planeten?

23.04.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Von der Genexpression zur Mikrostruktur des Gehirns

24.04.2018 | Biowissenschaften Chemie

Bestrahlungserfolg bei Hirntumoren lässt sich mit kombinierter PET/MRT vorhersagen

24.04.2018 | Medizintechnik

RWI/ISL-Containerumschlag-Index auf hohem Niveau deutlich rückläufig

24.04.2018 | Wirtschaft Finanzen

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics