Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Galaktisches Gas steigert die Geburtenrate

11.02.2010
Wissenschaftler erklären, weshalb in jungen Galaxien besonders viele Sterne entstanden sind

Sterne entstehen aus gigantischen Gaswolken innerhalb von Galaxien. Die Geburtenrate hat sich aber im Lauf der Zeit verändert. So kamen im jungen Universum deutlich mehr Sterne zur Welt. Jetzt haben Forscher aus dem Max-Planck-Institut für extraterrestrische Physik zusammen mit Kollegen eine einleuchtende Erklärung dafür gefunden: Normale Galaxien enthielten wenige Milliarden Jahre nach dem Urknall fünf- bis zehnmal mehr Gas als heutige Galaxien - und stellten damit eine größere Menge an Rohstoffen für die Sternentstehung bereit (Nature, 11. Februar 2010).


Zwei Ansichten einer typischen Galaxie, 5,5 Milliarden Jahre nach dem Urknall. Links eine Aufnahme des Hubble-Weltraumteleskops im optischen Licht, rechts die Kombination eines Bildes des IRAM-Interferometers (rot/gelb) mit einem Foto im optischen Bereich (grau). Diese Beobachtungen zeigen, dass die Masse des kalten Gases in der galaktischen Scheibe etwa zehnmal größer ist als in heutigen Galaxien.

Bild: MPE / IRAM

Zum ersten Mal war es uns möglich, das kalte molekulare Gas in normalen Galaxien nachzuweisen und die Milchstraßensysteme so abzubilden, wie sie kurz nach dem Urknall für massereiche Galaxienpopulationen typisch waren", sagt Linda Tacconi vom Max-Planck-Institut für extraterrestrische Physik, Erstautorin des Artikels in der Zeitschrift Nature.

Die Beobachtungen erlauben einen ersten direkten Blick auf Galaxien - genauer gesagt auf das kalte Gas in diesen Galaxien, nur drei bis fünf Milliarden Jahre nach dem Urknall. Damals haben diese Milchstraßensysteme anscheinend mehr oder weniger kontinuierlich Sterne gebildet, allerdings mit einer mindestens zehnmal höheren Rate als in ähnlich massereichen Galaxien im heutigen Universum.

Die grundlegende Frage lautet nun, ob diese höhere Sternentstehungsrate durch eine größere Menge an kaltem, molekularem Gas - dem Rohstoff für junge Sterne - hervorgerufen wurde. Oder ob die Sternengeburt im jungen Universum einfach viel effizienter verlief.

Seit etwa zehn Jahren entwerfen Astrophysiker ein allgemeines Bild davon, wie sich Galaxien bilden und entwickeln, seit das Universum wenige Milliarden Jahre alt war. Danach sammelte sich unter dem Einfluss der mysteriösen Dunklen Materie abkühlendes Gas, ähnlich wie Regenwasser in Pfützen. Mit der Zeit strömte Gas von diesen "Materiepfützen" zu Protogalaxien; Kollisionen und Verschmelzungen dieser Systeme führten dann nach und nach zum hierarchischen Anwachsen der Galaxienmasse.

Detaillierte Beobachtungen des kalten Gases, seiner Verteilung und Dynamik, sind deshalb von äußerster Wichtigkeit. Denn nur so lassen sich die komplexen Mechanismen verstehen, die dafür sorgten, dass sich diese ersten Protogalaxien zu modernen Galaxien wie unserer Milchstraße entwickelten.

Eine groß angelegte Studie von entfernten, leuchtkräftigen und massereichen Galaxien mit dem IRAM-Interferometer auf dem Plateau du Bure (1) brachte jetzt Licht ins Dunkel: Zum ersten Mal gelang es, den Rohstoff für die Sternentstehung direkt zu beobachten.

Weil die Empfindlichkeit der Messgeräte vor kurzem deutlich verbessert wurde, konnten die Astronomen die Eigenschaften von kaltem Gas anhand einer Spektrallinie des Kohlenstoffmonoxid-Moleküls in normalen, nicht übermäßig leuchtkräftigen Galaxien systematisch vermessen - und zwar zu einer Zeit, das das Weltall nur etwa 40 beziehungsweise 24 Prozent seines jetzigen Alters besaß. Frühere Beobachtungen beschränkten sich meist auf seltene, sehr leuchtstarke Objekte wie etwa verschmelzende Galaxien oder Quasare, also die Kerne von jungen, aktiven Galaxien.

"Wir haben herausgefunden, dass massereiche normale Galaxien bei einer Rotverschiebung von 1,2 und 2,3 etwa fünf- bis zehnmal mehr Gas enthalten, als wir im nahen Universum sehen", sagt Linda Tacconi (2). Diese Galaxien zeigen über lange Zeit eine hohe Sternentstehungsrate. Das heißt: Aus dem Halo aus Dunkler Materie muss kontinuierlich Gas nachströmen - genau so, wie es kürzlich aufgestellte Theorien vorhersagen. Ein weiteres wichtiges Ergebnis dieser Beobachtungen sind die ersten räumlich aufgelösten Bilder der Verteilung und Bewegung des kalten Gases in mehreren Galaxien.

"Die Messungen geben uns entscheidende Hinweise und Randbedingungen für die nächste Generation von theoretischen Modellen, mit denen wir die frühen Phasen der Galaxienentwicklung genauer untersuchen wollen", sagt Andreas Burkert, Experte für Sternentstehung und Galaxienentwicklung am Garchinger Exzellenzcluster Universe. "Letztlich werden uns diese Arbeiten auch dabei helfen, den Ursprung und die Entwicklung unserer Milchstraße zu verstehen."

(1) Das Interferometer des Radioastronomischen Instituts im Millimeterbereich (IRAM) am Plateau de Bure befindet sich auf einer Höhe von 2600 Metern in den südlichen, französischen Alpen nähe Gap. Das PdBI ist derzeit das leistungsfähigste Millimeter-Interferometer der Welt und das einzige, das die schwache Emissionslinie von CO-Molekülen - dem besten Indikator für kaltes Gas - in weit entfernten Galaxien nachweisen kann. Das Interferometer besteht aus sechs Teleskopen mit je 15 Meter Durchmesser, die alle mit einem extrem empfindlichen Heterodyn-Strahlenmessgerät zum Nachweis von Millimeter-Wellenlängen ausgestattet sind. IRAM wird partnerschaftlich von der Max-Planck-Gesellschaft in Deutschland, INSU/CNRS in Frankreich und IGN in Spanien betrieben.

(2) Die Rotverschiebung ist ein Maß für die Entfernung und damit für das Alter eines Objekts. Hat eine Galaxie etwa eine Rotverschiebung von 2,3, sehen wir sie in einer Epoche, die einem Weltalter von 24 Prozent des heutigen entspricht, also gut drei Milliarden Jahre nach dem Urknall.

[HOR / HAE]

Originalveröffentlichung:

L. J. Tacconi et al.
High molecular gas fractions in normal massive star forming galaxies in the young Universe

Nature, 11. Februar 2010

Weitere Informationen erhalten Sie von:

Dr. Hannelore Hämmerle (Pressesprecherin)
Max-Planck-Institut für extraterrestrische Physik, Garching
Tel.: Tel.: +49 89 30000-3980
E-Mail: hannelore.haemmerle@mpe.mpg.de
Prof. Dr. Reinhard Genzel
Max-Planck-Institut für extraterrestrische Physik, Garching
Tel.: +49 89 30000-3280
E-Mail: genzel@mpe.mpg.de

Barbara Abrell | Max-Planck-Gesellschaft
Weitere Informationen:
http://www.mpg.de

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Eine Extra-Sekunde zum neuen Jahr
08.12.2016 | Physikalisch-Technische Bundesanstalt (PTB)

nachricht Heimcomputer entdecken rekordverdächtiges Pulsar-Neutronenstern-System
08.12.2016 | Max-Planck-Institut für Radioastronomie

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Rätsel um Mott-Isolatoren gelöst

Universelles Verhalten am Mott-Metall-Isolator-Übergang aufgedeckt

Die Ursache für den 1937 von Sir Nevill Francis Mott vorhergesagten Metall-Isolator-Übergang basiert auf der gegenseitigen Abstoßung der gleichnamig geladenen...

Im Focus: Poröse kristalline Materialien: TU Graz-Forscher zeigt Methode zum gezielten Wachstum

Mikroporöse Kristalle (MOFs) bergen große Potentiale für die funktionalen Materialien der Zukunft. Paolo Falcaro von der TU Graz et al zeigen in Nature Materials, wie man MOFs gezielt im großen Maßstab wachsen lässt.

„Metal-organic frameworks“ (MOFs) genannte poröse Kristalle bestehen aus metallischen Knotenpunkten mit organischen Molekülen als Verbindungselemente. Dank...

Im Focus: Gravitationswellen als Sensor für Dunkle Materie

Die mit der Entdeckung von Gravitationswellen entstandene neue Disziplin der Gravitationswellen-Astronomie bekommt eine weitere Aufgabe: die Suche nach Dunkler Materie. Diese könnte aus einem Bose-Einstein-Kondensat sehr leichter Teilchen bestehen. Wie Rechnungen zeigen, würden Gravitationswellen gebremst, wenn sie durch derartige Dunkle Materie laufen. Dies führt zu einer Verspätung von Gravitationswellen relativ zu Licht, die bereits mit den heutigen Detektoren messbar sein sollte.

Im Universum muss es gut fünfmal mehr unsichtbare als sichtbare Materie geben. Woraus diese Dunkle Materie besteht, ist immer noch unbekannt. Die...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Wie sich Zellen gegen Salmonellen verteidigen

Bioinformatiker der Goethe-Universität haben das erste mathematische Modell für einen zentralen Verteidigungsmechanismus der Zelle gegen das Bakterium Salmonella entwickelt. Sie können ihren experimentell arbeitenden Kollegen damit wertvolle Anregungen zur Aufklärung der beteiligten Signalwege geben.

Jedes Jahr sind Salmonellen weltweit für Millionen von Infektionen und tausende Todesfälle verantwortlich. Die Körperzellen können sich aber gegen die...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Firmen- und Forschungsnetzwerk Munitect tagt am IOW

08.12.2016 | Veranstaltungen

NRW Nano-Konferenz in Münster

07.12.2016 | Veranstaltungen

Wie aus reinen Daten ein verständliches Bild entsteht

05.12.2016 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Einzelne Proteine bei der Arbeit beobachten

08.12.2016 | Biowissenschaften Chemie

Intelligente Filter für innovative Leichtbaukonstruktionen

08.12.2016 | Messenachrichten

Seminar: Ströme und Spannungen bedarfsgerecht schalten!

08.12.2016 | Seminare Workshops