Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Fundamentale Symmetrie zwischen Materie und Antimaterie bestätigt

28.07.2011
Im Rahmen einer internationalen Kollaboration haben MPQ-Wissenschaftler mit bislang unerreichter Genauigkeit das Verhältnis von Antiproton- zu Elektronmasse ermittelt.

Nach modernen kosmologischen Modellen wurden Materie und Antimaterie am Beginn des Universums, beim Urknall, in gleichen Mengen erzeugt. Diverse theoretische Konzepte versuchen zu erklären, warum das sichtbare Universum heute dennoch ausschließlich aus Materie zu bestehen scheint. Gleichzeitig erzeugen experimentelle Gruppen künstlich Antimaterie-Teilchen. Damit wollen sie herausfinden, ob Antimaterie-Teilchen, wie in den Modellen der Teilchenphysik vorhergesagt, exakt die gleichen Eigenschaften haben wie ihre materiellen Gegenstücke, abgesehen von der entgegen gesetzten elektrischen Ladung. Jetzt hat die Forschungsgruppe „Antimatter Spectroscopy“ von Dr. Masaki Hori, die mit der Abteilung Laserspektroskopie von Prof. Theodor W. Hänsch am Max-Planck-Institut für Quantenoptik in Garching assoziiert ist, die theoretisch geforderte Symmetrie zwischen Materie und Antimaterie untermauert (Nature, 28. Juli 2011). Indem die Wissenschaftler eine neue Methode der Laserspektroskopie auf antiprotonisches Helium, ein zur Hälfte aus Antimaterie bestehendes Atom, anwandten, gelang es ihnen, das Verhältnis von Antiproton- zu Elektronmasse mit einer Genauigkeit von 1,3mal 10-9 zu bestimmen. Ihr Ergebnis stimmt exakt mit dem mit gleicher Genauigkeit bestimmten Verhältnis von Proton- zu Elektronmasse überein. Das Experiment wurde am Europäischen Forschungszentrum für Teilchenphysik CERN in Genf ausgeführt, unter Leitung von Wissenschaftlern des MPQ und der Universität Tokio. Maßgeblich beteiligt waren außerdem die Universität Brescia (Italien), das Stefan Meyer-Institut in Wien und das ungarische KFKI Forschungsinstitut in Budapest.


Ein Antiproton (schwarzes Kügelchen), das in einem Helimatom gefangen ist, wird von zwei Laserstrahlen beleuchtet. Grafik: MPQ

Allen gegenwärtigen theoretischen Konzepten und experimentellen Beobachtungen zufolge herrscht in der Natur eine fundamentale Symmetrie, die sogenannte C(harge)P(arity)T(ime) Invarianz (das steht für Ladungskonjugation, Raumspiegelung und Zeitumkehr). Das sogenannte CPT-Theorem postuliert, dass eine „Antiwelt“, in der alle Materie im Universum durch Antimaterie ersetzt, rechts und links vertauscht und überdies der Fluss der Zeit umkehrt wird, von unserer realen Welt nicht zu unterscheiden ist. Atome aus Antimaterie müssten demnach präzise dasselbe wiegen wie ihre materiellen Gegenstücke und auch mit exakt denselben Frequenzen schwingen. Könnte experimentell ein noch so kleiner Unterschied zwischen Materie und Antimaterie festgestellt werden, so würde das einen Bruch dieser fundamentalen Symmetrie bedeuten. Das Schlüsselwort dabei lautet „klein“ – es ist absolut notwendig, die genauesten zur Verfügung stehenden Methoden und Instrumente zu verwenden, um diesen Vergleich mit der höchstmöglichen Präzision durchzuführen.

Antimaterie ist nur sehr schwer im Labor zu untersuchen, da sie bereits beim geringsten Kontakt mit gewöhnlicher Materie, und sei es auch nur einem einzelnen Luftmolekül, zerstrahlt und sich dabei in Energie und neue Teilchen umwandelt. 1997 bauten Forscher des MPQ in Zusammenarbeit mit dem CERN in Genf (Schweiz) sowie weiteren europäischen, amerikanischen und japanischen Gruppen eine neue Anlage namens „Antiprotonen Decelerator“ (Abbremser). Hier werden die in Teilchenkollisionen bei hohen Energien erzeugten Antiprotonen gesammelt, zirkulieren in einer ringförmigen Vakuumkammer von 190 Meter Umfang und werden dort schrittweise abgebremst, bevor sie den Experimenten zugeführt werden. Die sogenannte ASACUSA[1]-Gruppe (für „Atomic Spectroscopy and Collisions using Slow Antiprotons“, genannt nach einem Stadtteil in Tokio), zu der Dr. Hori gehört, schickt die Antiprotonen auf ein Helium-Target, um damit antiprotonisches Helium zu erzeugen und zu untersuchen.

Gewöhnliches Helium besteht aus einen Atomkern, der von zwei Hüllenelektronen umrundet wird. Bei antiprotonischem Helium wird das negativ geladene Elektron durch das ebenfalls negativ geladene Antiproton ersetzt, das sich jetzt in einer hoch angeregten Umlaufbahn in einer Entfernung von etwa 100 Pikometern (10-10 Metern) befindet. Dieses Atom wird jetzt mit Laserlicht bestrahlt, dessen Frequenz genau so eingestellt ist, dass das Antiproton von einer Bahn auf die nächste hüpft. Vergleicht man diese Frequenz mit theoretischen Berechnungen, dann lässt sich daraus die Masse des Antiprotons im Verhältnis zur Masse des Elektrons ableiten.

Die ständige thermische Bewegung der Antiprotonen ruft jedoch prinzipielle Ungenauigkeiten hervor: Atome, die sich dabei auf den Laser zu bewegen, sehen aufgrund der Dopplerverschiebung eine andere Frequenz als Atome, die sich davon weg bewegen. Das ist der gleiche Effekt, der auch bei sich nähernden oder wieder entfernenden Sirenen zu einer Änderung des Tons führt. Dadurch wurde die Genauigkeit der 2006 von der ASACUSA-Gruppe ausgeführten Messungen begrenzt, bei denen die Atome nur mit einem Laserstrahl angeregt wurden.

Mit der bei diesem Experiment verwendeten Methode der „Zwei-Photon-Spektroskopie“ wird dieser Effekt zumindest teilweise ausgetrickst, was zu einer vier bis sechs Mal höheren Genauigkeit führt. Dabei werden die Atome von zwei gegenläufigen Laserstrahlen unterschiedlicher Farbe beleuchtet. Der erste Laser bringt das Antiproton nur auf eine Bahn, die einem virtuellen, d.h. quantenmechanisch nicht erlaubten Energieniveau entspricht. Erst der zweite Laser bringt das Antiproton auf die niedrigste erlaubte Bahn. Da das Antiproton sehr schwer ist (rund 1800 Mal so schwer wie das Elektron), ist es extrem schwierig, diesen Zwei-Photonen-Übergang zu realisieren. Erst die extrem scharfe Einstellung der Laserfrequenzen, welche die MPQ-Physiker mit dem optischen Frequenzkamm erzielten (für diese Entwicklung erhielt Prof. Hänsch 2005 den Nobelpreis für Physik), brachte den Durchbruch.

Die neuen Messungen ergaben, dass das Antiproton 1836,1526736(23) Mal schwerer ist als das Elektron, die Zahl in der Klammer entspricht der Ungenauigkeit in der ersten Standardabweichung. „Wir haben die Masse des Antiprotons im Verhältnis zur Masse des Elektrons auf 10 Dezimalstellen genau bestimmt“, erklärt Masaki Hori. „Dies untermauert die Gültigkeit des CPT-Theorems. Darüber hinaus lernen wir, dass Antiprotonen den gleichen nichtlinearen Regeln der Quantenoptik unterliegen wie normale Teilchen, und wir sie ganz genauso mit Laserlicht beeinflussen können. Die neue Zwei-Photon-Technik wird zu einer erheblichen Steigerung solcher Messungen führen, so dass die Masse des Antiprotons vielleicht einmal genauer bestimmt sein wird als die des Protons.“

Das „Komitee für Daten in Wissenschaft und Technologie (CODATA)“ verwendet die neuen Messergebnisse auch zur Bestimmung des Verhältnisses von Protonmasse zu Elektronmasse. Diese Größe hat wiederum Einfluss auf viele andere Naturkonstanten. Olivia Meyer-Streng

[1]ASACUSA ist eines von diversen Experimenten, die am CERN Antimaterie untersuchen: ATRAP und ALPHA untersuchen Atome aus Antiwasserstoff, AeGIS beobachtet das Verhalten von Antimaterie unter der Schwerkraft, und ACE befasst sich mit der potentiellen Anwendung von Antiprotonen für die Strahlentherapie von Krebserkrankungen.

Originalveröffentlichung:
Masaki Hori, Anna Sótér, Daniel Barna, Andreas Dax, Ryugo Hayano, Susanne Friedreich, Bertalan Juhász, Thomas Pask, Eberhard Widmann, Dezső Horváth, Luca Venturelli, Nicola Zurlo
Two-photon laser spectroscopy of antiprotonic helium and the antiproton‐to‐electron mass ratio

Nature, 28. Juli 2011

Kontakt:
Dr. Masaki Hori
Max-Planck-Institute für Quantenoptik
Hans-Kopfermann-Straße 1
85748 Garching
Tel.: +49(0)89 32905 268
E-Mail: masaki.hori@mpq.mpg.de
Dr. Olivia Meyer-Streng
Presse- und Öffentlichkeitsarbeit
Max-Planck-Institute für Quantenoptik
Hans-Kopfermann-Straße 1
85748 Garching
Tel.: +49(0)89 32905 213
E-Mail: olivia.meyer-streng@mpq.mpg.de

Dr. Olivia Meyer-Streng | Max-Planck-Institut
Weitere Informationen:
http://www.mpq.mpg.de/

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Die schnellste lichtgetriebene Stromquelle der Welt
26.09.2017 | Friedrich-Alexander-Universität Erlangen-Nürnberg

nachricht Internationales Forscherteam entdeckt kohärenten Lichtverstärkungsprozess in Laser-angeregtem Glas
25.09.2017 | Universität Kassel

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Die schnellste lichtgetriebene Stromquelle der Welt

Die Stromregelung ist eine der wichtigsten Komponenten moderner Elektronik, denn über schnell angesteuerte Elektronenströme werden Daten und Signale übertragen. Die Ansprüche an die Schnelligkeit der Datenübertragung wachsen dabei beständig. In eine ganz neue Dimension der schnellen Stromregelung sind nun Wissenschaftler der Lehrstühle für Laserphysik und Angewandte Physik an der Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) vorgedrungen. Ihnen ist es gelungen, im „Wundermaterial“ Graphen Elektronenströme innerhalb von einer Femtosekunde in die gewünschte Richtung zu lenken – eine Femtosekunde entspricht dabei dem millionsten Teil einer milliardstel Sekunde.

Der Trick: die Elektronen werden von einer einzigen Schwingung eines Lichtpulses angetrieben. Damit können sie den Vorgang um mehr als das Tausendfache im...

Im Focus: The fastest light-driven current source

Controlling electronic current is essential to modern electronics, as data and signals are transferred by streams of electrons which are controlled at high speed. Demands on transmission speeds are also increasing as technology develops. Scientists from the Chair of Laser Physics and the Chair of Applied Physics at Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) have succeeded in switching on a current with a desired direction in graphene using a single laser pulse within a femtosecond ¬¬ – a femtosecond corresponds to the millionth part of a billionth of a second. This is more than a thousand times faster compared to the most efficient transistors today.

Graphene is up to the job

Im Focus: LaserTAB: Effizientere und präzisere Kontakte dank Roboter-Kollaboration

Auf der diesjährigen productronica in München stellt das Fraunhofer-Institut für Lasertechnik ILT das Laser-Based Tape-Automated Bonding, kurz LaserTAB, vor: Die Aachener Experten zeigen, wie sich dank neuer Optik und Roboter-Unterstützung Batteriezellen und Leistungselektronik effizienter und präziser als bisher lasermikroschweißen lassen.

Auf eine geschickte Kombination von Roboter-Einsatz, Laserscanner mit selbstentwickelter neuer Optik und Prozessüberwachung setzt das Fraunhofer ILT aus Aachen.

Im Focus: LaserTAB: More efficient and precise contacts thanks to human-robot collaboration

At the productronica trade fair in Munich this November, the Fraunhofer Institute for Laser Technology ILT will be presenting Laser-Based Tape-Automated Bonding, LaserTAB for short. The experts from Aachen will be demonstrating how new battery cells and power electronics can be micro-welded more efficiently and precisely than ever before thanks to new optics and robot support.

Fraunhofer ILT from Aachen relies on a clever combination of robotics and a laser scanner with new optics as well as process monitoring, which it has developed...

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Im Spannungsfeld von Biologie und Modellierung

26.09.2017 | Veranstaltungen

Archaeopteryx, Klimawandel und Zugvögel: Deutsche Ornithologen-Gesellschaft tagt an der Uni Halle

26.09.2017 | Veranstaltungen

Unsere Arbeitswelt von morgen – Polarisierendes Thema beim 7. Unternehmertag der HNEE

26.09.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Europas erste Testumgebung für selbstfahrende Züge entsteht im Burgenland

26.09.2017 | Verkehr Logistik

Nerven steuern die Bakterienbesiedlung des Körpers

26.09.2017 | Biowissenschaften Chemie

Mit künstlicher Intelligenz zum chemischen Fingerabdruck

26.09.2017 | Biowissenschaften Chemie