Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Frustriert gegen den elektrischen Widerstand

23.10.2013
Ein neues Modell für das magnetische Verhalten von Schicht-Kobaltaten könnte langfristig eine Erklärung der Hochtemperatur-Supraleitung ermöglichen

Die Vision vieler Physiker ist ein Material, das Strom bei Raumtemperatur ohne Verluste leitet. Um sie zu verwirklichen, müssen Forscher jedoch erst verstehen, warum Hochtemperatur-Supraleiter ihren Widerstand verlieren.


Ein charakteristisches Spektrum und seine mögliche Erklärung: Einige Materialien wie etwa Hochtemperatur-Supraleiter absorbieren Energie in Abhängigkeit vom Impuls eingestrahlter Neutronen in einem Spektrum, das einem Uhrglas ähnelt. Die Illustration deutet an, dass das typische Anregungsspektrum einer frustrierten Spinordnung entspringen könnte. Die Spins – die Eigendrehimpulse der Elektronen – werden durch die Pfeilrichtungen symbolisiert. Grüne Spins orientieren sich so wie in einer idealen antiferromagnetischen Anordnung. Je stärker rot sie gefärbt sind, desto weiter sind sie aus ihrer idealen Position herausgedreht.

© Nature Communications, 19. 9. 2013; doi:10.1038/ncomms3449

Verglichen mit herkömmlichen Supraleitern leiten diese Materialien bei deutlich höheren Temperaturen verlustfrei Strom, bisher allerdings immer noch weit unter Null Grad Celsius. Physiker des Max-Planck-Instituts für chemische Physik fester Stoffe in Dresden weisen nun die Richtung zu einer neuen Erklärung für dieses elektronische Verhalten.

Wie viele Physiker setzen sie bei den magnetischen Eigenschaften von Hochtemperatur-Supraleitern an, weil deren magnetischen Anregungs-Spektren alle das gleiche, auffällige Erscheinungsbild zeigen.

Die Dresdner Forscher liefern nun Belege gegen zwei bisher favorisierte Erklärungsansätze für das universelle Spektrum, das vermutlich mit der Hochtemperatur-Supraleitung zusammenhängt. Zudem präsentieren sie einen alternativen Mechanismus, der auf Frustrationen in der Spin-Ordnung beruht.

Seit ihrer Entdeckung in den 1980er-Jahren geben Hochtemperatur-Supraleiter der Wissenschaft Rätsel auf. Die Materialien heißen so, weil sie bei weitem nicht so stark abgekühlt werden müssen wie herkömmliche Supraleiter, bis sie ihren elektrischen Widerstand verlieren, und daher mit flüssigem Stickstoff statt sehr teurem flüssigem Helium gekühlt werden können. So wird etwa eine so genannte Kuprat-Keramik bei einer relativ hohen Temperatur von rund minus 135 Grad Celsius supraleitend. Die Gründe dafür zu verstehen, würde die Aussicht enorm erhöhen, gezielt einen Raumtemperatur-Supraleiter zu entwickeln.

Für die Suche nach dem zugrunde liegenden Mechanismus ist die Neutronenspektroskopie wichtig, bei der man Materialproben mit Neutronen aus einem Reaktor beschießt und die Wechselwirkung von Neutronen und Elektronen analysiert. Die Neutronenspektroskopie gibt Aufschluss über die magnetischen Eigenschaften eines Materials, die von der Ordnung der Elektronenspins bestimmt werden. Der Spin ist eine quantenmechanische Eigenschaft der Elektronen, die man sich in diesem Zusammenhang wie winzige Kompassnadeln vorstellen kann. Je nachdem, wie benachbarte Spins relativ zueinander ausgerichtet sind – parallel oder antiparallel – besitzt das System einen unterschiedlichen Energieinhalt. Mit der Neutronenspektroskopie lässt sich ein Spektrum der magnetischen Anregungen solcher Spin-Strukturen aufzeichnen.

Warum ähnelt das Spektrum magnetischer Anregungen einem Stundenglas?

Hochtemperatur-Supraleiter zeigen ein gemeinsames Muster dieser magnetischen Anregungen: das „hourglass-Spektrum“. Seinen Namen trägt das Spektrum, weil es einem Stundenglas ähnelt. Da es eine universelle Eigenschaft aller Hochtemperatur-Supraleiter darstellt, sind Forscher überzeugt, dass es für das Verständnis dieser Form von Supraleitung von großer Bedeutung ist. Daher versuchen Forscher weltweit dieses hourglass-Spektrum zu erklären.

Vor allem zwei Erklärungen ziehen sie für dieses Phänomen bisher heran. Diese Ansätze beruhen jeweils aus umfassenden Beschreibungen des elektronischen und magnetischen Verhaltens der Materialien, die auch als Grundlage für die Erklärung der Hochtemperatur-Supraleitung dienen können. Allerdings haben Theoretiker diese Zusammenhänge bisher noch nicht zweifelsfrei formulieren können. Einer der Erklärungsansätze für die hourglass-Spektren beruht auf einem Modell der Materialien, in dem Fermiflächen eine wichtige Rolle spielen: Das sind die Elektronenzustände, die für die Leitfähigkeit von Metallen verantwortlich sind. Die andere Erklärung des Spektrums geht von einem Modell der Festkörper aus, in dem das Material durch streifenförmig angeordnete elektrische Ladungen in den Kristall-Schichten charakterisiert wird. Aus solchen Schichten sind Kuprate und andere Hochtemperatur-Supraleiter aufgebaut. Dieses Modell schien sich zu bestätigen, als dieselbe Art von magnetischer Anregung kürzlich in einem Kobaltoxid-Isolator beobachtet wurde, in dem es keine Fermiflächen gibt.

Nun stellen die Forscher um Alexander Komarek am Max-Planck-Institut für chemische Physik fester Stoffe auch diesen zweiten Erklärungsansatz infrage. Sie erzeugten einen sehr reinen Kobaltoxid-Kristall, der das hourglass-Anregungsspektrum der Kuprat-Supraleiter zeigt. „Allerdings fehlen ihm nicht nur metallische Eigenschaften, sondern auch die Ladungsstreifen, weil sich die Ladungen in unserem extrem reinen Kobaltoxid-Kristall außergewöhnlich homogen verteilen“, erklärt Alexander Komarek. „Damit können wir die beiden populärsten Modelle zur Beschreibung der Spin-Anregungen in Kuprat-Hochtemperatursupraleitern für diese Kobalt-Oxid-Verbindung ausschließen“

Die neue Erklärung basiert auf frustrierten Elektronenspins

Das Team um Alexander Komarek wartet gleichzeitig mit einer neuen Erklärung für das hour-glass-Spektrum auf. Demnach kommt es durch ein Phänomen namens Frustration zustande, das mit der gegenseitigen Ausrichtung der Spins zusammenhängt. Bei tiefen Temperaturen tendieren die Spins dazu, sich zu ordnen, ähnlich wie parallel nebeneinander liegende Magnetstäbe sich ausrichten, weil dadurch die Energie minimal wird.

Allerdings kann sich diese ideale Ordnung in den Kobaltoxidkristallen der Dresdner Forscher und möglicherweise auch in Hochtemperatursupraleitern nicht ausbilden, wie die Experimente des Dresdner Teams zeigen. Die Materialien sind chemisch nämlich so zusammengesetzt, dass zwischen den Spins, die sich eigentlich regelmäßig anordnen würden, einige wenige zusätzliche Spins untergebracht werden müssen. Jede zusätzliche elektrische Ladung stört die Ordnung empfindlich. Die Spins sollen es nun gleichsam allen recht machen: um ihre Energie zu minimieren, müssten sie sich gleichzeitig sowohl relativ zum Spin der neuen Ladung ausrichten als auch die alte Ordnung beibehalten. Ein unlösbarer Konflikt.

„Gerade diese Frustration könnte nun aber der Schlüssel zum Verständnis der Anregungen in den Hochtemperatur-Supraleitern sein“, sagt Alexander Komarek. Denn den Ergebnissen des Dresdner Teams zufolge müssen Physiker möglicherweise die frustrierte Spin-Anordnung berücksichtigen, um das elektronische und magnetische Verhalten der Materialien zu beschreiben, die in der Neutronenstreuung durch ein hourglass-Spektrum auffallen. Ein solches umfassendes Modell auf Basis der Spin-Frustration könnte dann vielleicht sogar auch eine Erklärung liefern, warum die betreffenden Materialien Strom ohne Widerstand transportieren.

Ansprechpartner

Dr. Alexander C. Komarek
Max-Planck-Institut für chemische Physik fester Stoffe, Dresden
Telefon: +49 351 4646-4423
E-Mail: alexander.komarek@­cpfs.mpg.de
Originalpublikation
Yvo Drees, Daniel Lamago, Andrea Piovano und Alexander C. Komarek
Hour-glass magnetic spectrum in a stripeless insulating transition metal oxide
Nature Communications, 19. September 2013

Dr. Alexander C. Komarek | Max-Planck-Institut
Weitere Informationen:
http://www.mpg.de/7575666/hochtemperatur_supraleiter_magnetische_anregung

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Neuartige Halbleiter-Membran-Laser
22.03.2017 | Universität Stuttgart

nachricht Seltene Erden: Wasserabweisend erst durch Altern
22.03.2017 | Universität Basel

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fliegende Intensivstationen: Ultraschallgeräte in Rettungshubschraubern können Leben retten

Etwa 21 Millionen Menschen treffen jährlich in deutschen Notaufnahmen ein. Im Kampf zwischen Leben und Tod zählt für diese Patienten jede Minute. Wenn sie schon kurz nach dem Unfall zielgerichtet behandelt werden können, verbessern sich ihre Überlebenschancen erheblich. Damit Notfallmediziner in solchen Fällen schnell die richtige Diagnose stellen können, kommen in den Rettungshubschraubern der DRF Luftrettung und zunehmend auch in Notarzteinsatzfahrzeugen mobile Ultraschallgeräte zum Einsatz. Experten der Deutschen Gesellschaft für Ultraschall in der Medizin e.V. (DEGUM) schulen die Notärzte und Rettungsassistenten.

Mit mobilen Ultraschallgeräten können Notärzte beispielsweise innere Blutungen direkt am Unfallort identifizieren und sie bei Bedarf auch für Untersuchungen im...

Im Focus: Gigantische Magnetfelder im Universum

Astronomen aus Bonn und Tautenburg in Thüringen beobachteten mit dem 100-m-Radioteleskop Effelsberg Galaxienhaufen, das sind Ansammlungen von Sternsystemen, heißem Gas und geladenen Teilchen. An den Rändern dieser Galaxienhaufen fanden sie außergewöhnlich geordnete Magnetfelder, die sich über viele Millionen Lichtjahre erstrecken. Sie stellen die größten bekannten Magnetfelder im Universum dar.

Die Ergebnisse werden am 22. März in der Fachzeitschrift „Astronomy & Astrophysics“ veröffentlicht.

Galaxienhaufen sind die größten gravitativ gebundenen Strukturen im Universum, mit einer Ausdehnung von etwa zehn Millionen Lichtjahren. Im Vergleich dazu ist...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Auf der Spur des linearen Ubiquitins

Eine neue Methode ermöglicht es, den Geheimcode linearer Ubiquitin-Ketten zu entschlüsseln. Forscher der Goethe-Universität berichten darüber in der aktuellen Ausgabe von "nature methods", zusammen mit Partnern der Universität Tübingen, der Queen Mary University und des Francis Crick Institute in London.

Ubiquitin ist ein kleines Molekül, das im Körper an andere Proteine angehängt wird und so deren Funktion kontrollieren und verändern kann. Die Anheftung...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Lebenswichtige Lebensmittelchemie

23.03.2017 | Veranstaltungen

Die „Panama Papers“ aus Programmierersicht

22.03.2017 | Veranstaltungen

Über Raum, Zeit und Materie

22.03.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Besser lernen dank Zink?

23.03.2017 | Biowissenschaften Chemie

Lebenswichtige Lebensmittelchemie

23.03.2017 | Veranstaltungsnachrichten

Innenraum-Ortung für dynamische Umgebungen

23.03.2017 | Architektur Bauwesen