Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Frequenzkämme als „Schnüffler“ für Moleküle

11.01.2013
Für die Identifizierung von Molekülen erzeugen winzige kristalline Resonatoren Frequenzkämme im mittleren Infrarot.

Die meisten Moleküle, auch solche, die für die medizinische Diagnose oder für Schadstoffmessungen interessant sind, besitzen charakteristische „Fingerabdrücke“ im mittleren Infrarot. Die derzeit üblichen Techniken, Frequenzkämme in diesem Spektralbereich zu erzeugen, beruhen allerdings auf sehr unhandlichen, kostspieligen und in ihren Anwendungen eingeschränkten Systemen.

Einem Team von Wissenschaftlern der Abteilung Laserspektroskopie am Max-Planck-Institut für Quantenoptik ist es nun, in Zusammenarbeit mit der Ecole Polytechnique de Lausanne (Schweiz), der Ludwig-Maximilians-Universität München, der Menlo Systems GmbH (Martinsried bei München) und dem Institut des Sciences Moléculaires d’Orsay (France), gelungen, Frequenzkämme im mittleren Infrarot mit Hilfe von winzigen kristallinen Mikroresonatoren zu erzeugen (Nature Communications, 8. Januar 2013). Solche Miniatur-Werkzeuge, die Moleküle in kürzester Zeit und mit hoher Empfindlichkeit nachweisen und charakterisieren, könnten viele wissenschaftliche und technische Bereiche geradezu revolutionieren.

Bei optischen Frequenzkamm-Generatoren handelt es sich um kohärente Lichtquellen, die einen Kamm aus vielen Spektrallinien in exakt dem gleichen Frequenzabstand erzeugen. In den letzten zehn Jahren haben solche „Kämme“ die Frequenzmessung von Licht um Größenordnungen verbessert, was in der Verleihung des Nobelpreises für Physik an Prof. Theodor W. Hänsch im Jahr 2005 seine höchste Anerkennung fand. Heute haben sich Frequenzkämme mehr und mehr zu universellen Werkzeugen für viele und unerwartete Anwendungen entwickelt. Insbesondere in der Spektroskopie von Molekülen wurden durch den ihren Einsatz sehr große Fortschritte erzielt, sowohl in der Geschwindigkeit der Messung als auch in der Auflösung und in der Genauigkeit von Fourier-Spektrometern. Der Spektralbereich im mittleren Infrarot ist in dieser Hinsicht besonders wichtig, da Moleküle gerade hier besonders viele charakteristische Spektrallinien besitzen, ihren “Fingerabdruck” sozusagen. Die derzeit üblichen Verfahren zur Erzeugung von Frequenzkämmen im mittleren Infrarot beruhen größten Teils auf der nichtlinearen Umwandlung von Laserlicht im Nahen Infrarot. Dies macht die Systeme, wie in einem Artikel* in Nature Photonics Juli 2012 erörtert wurde, sehr unhandlich, teuer, und nur für Spezialisten zu gebrauchen.

Die neue, von einem Wissenschaftler-Team am MPQ entwickelte Methode umgeht diese Hindernisse. Der Frequenzkamm im mittleren Infrarot entsteht hier durch die Anregung von sehr vielen Schwingungsmoden, sogenannten „whispering gallery modes“, in einem kleinen, toroidförmigen und monolithischen Mikroresonator. Angeregt wird der Resonator mit kontinuierlicher Laserstrahlung, wobei ein Gütefaktor von mehr als 109 erzielt wird. In einem nichtlinearen Prozess, der „Vierwellenmischung“, werden die Schwingungen in ein breites Spektrum aus diskreten Kammlinien (Abstand 100 GHz) bei einer Wellenlänge nahe 2,5 Mikrometer umgewandelt. „Die bemerkenswerten Eigenschaften dieses Kamm-Generators sind seine kleinen Ausmaße, der große Linienabstand, die hohen Leistung pro Spektrallinie, sowie die hohe Umwandlungseffizienz“, erklärt Dr. Christine Wang, die dieses Experiment als Postdoc-Wissenschaflerin durchgeführt hat. „Die richtige Wahl des Ausgangsmaterials – in unserem Fall Magnesiumfluorid – sowie die ordnungsgemäße Fertigung des Resonators sind der Schlüssel für die große spektrale Bandbreite und das geringe Phasenrauschen, die Voraussetzungen für die Verwendung der Lichtquelle als Frequenzkamm sind.“ Das Spektrum der Fundamentalschwingungen von Molekülen in flüssiger Phase könnte damit innerhalb von Nanosekunden bestimmt werden, bei Unterbrechungszeiten in gleicher Größenordnung.

*A. Schliesser, N. Picqué, T.W. Hänsch, Mid-infrared frequency combs, Nature Photonics 6, 440-449 (2012)

Originalveröffentlichung:
C.Y. Wang, T. Herr, P. Del’Haye, A. Schliesser, J. Hofer, R. Holzwarth, T.W. Hänsch, N. Picqué and T.J. Kippenberg
Mid-infrared optical frequency combs at 2.5μm based on crystalline microresonators
Nature Communications 4, Article number: 1345, Issue of January 8th, 2013.
DOI: 10.1038/ncomms2335
Kontakt:
Prof. Dr. Theodor W. Hänsch
Max-Planck-Institut für Quantenoptik
Hans-Kopfermann-Straße 1
85748 Garching
Tel.: +49 (0) 89 32905 -712
E-Mail: t.w.haensch@mpq.mpg.de
Dr. Nathalie Picqué
Max-Planck-Institut für Quantenoptik
& Centre National de la Recherche Scientifique
Tel.: +49 (0) 89 32905 -780
E-Mail: nathalie.picque@u-psud.fr
nathalie.picque@mpq.mpg.de
Dr. Olivia Meyer-Streng
Presse und Öffentlichkeitsarbeit
Max-Planck-Institut für Quantenoptik
Tel.: +49 (0) 89 32 905 -213
Fax: +49 (0) 89 32 905 -200
E-Mail: olivia.meyer-streng@mpq.mpg.de
Prof. Tobias J. Kippenberg
Ecole Polytechnique Fédérale de Lausanne
Laboratory of Photonics and Quantum Measurements
Lausanne, Switzerland
E-Mail: tobias.kippenberg@epfl.ch

Dr. Olivia Meyer-Streng | Max-Planck-Institut
Weitere Informationen:
http://www.epfl.ch
http://www.mpq.mpg.de/

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Proteintransport - Stau in der Zelle
24.03.2017 | Ludwig-Maximilians-Universität München

nachricht Neuartige Halbleiter-Membran-Laser
22.03.2017 | Universität Stuttgart

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Wegweisende Erkenntnisse für die Biomedizin: NAD⁺ hilft bei Reparatur geschädigter Erbinformationen

Eine internationale Forschergruppe mit dem Bayreuther Biochemiker Prof. Dr. Clemens Steegborn präsentiert in 'Science' neue, für die Biomedizin wegweisende Forschungsergebnisse zur Rolle des Moleküls NAD⁺ bei der Korrektur von Schäden am Erbgut.

Die Zellen von Menschen und Tieren können Schäden an der DNA, dem Träger der Erbinformation, bis zu einem gewissen Umfang selbst reparieren. Diese Fähigkeit...

Im Focus: Designer-Proteine falten DNA

Florian Praetorius und Prof. Hendrik Dietz von der Technischen Universität München (TUM) haben eine neue Methode entwickelt, mit deren Hilfe sie definierte Hybrid-Strukturen aus DNA und Proteinen aufbauen können. Die Methode eröffnet Möglichkeiten für die zellbiologische Grundlagenforschung und für die Anwendung in Medizin und Biotechnologie.

Desoxyribonukleinsäure – besser bekannt unter der englischen Abkürzung DNA – ist die Trägerin unserer Erbinformation. Für Prof. Hendrik Dietz und Florian...

Im Focus: Fliegende Intensivstationen: Ultraschallgeräte in Rettungshubschraubern können Leben retten

Etwa 21 Millionen Menschen treffen jährlich in deutschen Notaufnahmen ein. Im Kampf zwischen Leben und Tod zählt für diese Patienten jede Minute. Wenn sie schon kurz nach dem Unfall zielgerichtet behandelt werden können, verbessern sich ihre Überlebenschancen erheblich. Damit Notfallmediziner in solchen Fällen schnell die richtige Diagnose stellen können, kommen in den Rettungshubschraubern der DRF Luftrettung und zunehmend auch in Notarzteinsatzfahrzeugen mobile Ultraschallgeräte zum Einsatz. Experten der Deutschen Gesellschaft für Ultraschall in der Medizin e.V. (DEGUM) schulen die Notärzte und Rettungsassistenten.

Mit mobilen Ultraschallgeräten können Notärzte beispielsweise innere Blutungen direkt am Unfallort identifizieren und sie bei Bedarf auch für Untersuchungen im...

Im Focus: Gigantische Magnetfelder im Universum

Astronomen aus Bonn und Tautenburg in Thüringen beobachteten mit dem 100-m-Radioteleskop Effelsberg Galaxienhaufen, das sind Ansammlungen von Sternsystemen, heißem Gas und geladenen Teilchen. An den Rändern dieser Galaxienhaufen fanden sie außergewöhnlich geordnete Magnetfelder, die sich über viele Millionen Lichtjahre erstrecken. Sie stellen die größten bekannten Magnetfelder im Universum dar.

Die Ergebnisse werden am 22. März in der Fachzeitschrift „Astronomy & Astrophysics“ veröffentlicht.

Galaxienhaufen sind die größten gravitativ gebundenen Strukturen im Universum, mit einer Ausdehnung von etwa zehn Millionen Lichtjahren. Im Vergleich dazu ist...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Rund 500 Fachleute aus Wissenschaft und Wirtschaft diskutierten über technologische Zukunftsthemen

24.03.2017 | Veranstaltungen

Lebenswichtige Lebensmittelchemie

23.03.2017 | Veranstaltungen

Die „Panama Papers“ aus Programmierersicht

22.03.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Rund 500 Fachleute aus Wissenschaft und Wirtschaft diskutierten über technologische Zukunftsthemen

24.03.2017 | Veranstaltungsnachrichten

Förderung des Instituts für Lasertechnik und Messtechnik in Ulm mit rund 1,63 Millionen Euro

24.03.2017 | Förderungen Preise

TU-Bauingenieure koordinieren EU-Projekt zu Recycling-Beton von über sieben Millionen Euro

24.03.2017 | Förderungen Preise