Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Freiheit der Elektronen währt nur kurz

03.07.2014

Während der Wechselwirkung eines intensiven extrem-ultravioletten (XUV) Laserpulses mit einem Cluster werden viele Ionen und freie Elektronen erzeugt, was zur Bildung eines Plasmas auf der Nanometer-Skala führt.

Ein Großteil der Elektronen bleibt im Cluster gefangen und rekombiniert mit Ionen. In einem neuartigen Ansatz unter der Verwendung einer XUV-Quelle im Labor-Maßstab haben wir nun die Zeitskala dieser Elektronen-Ionen Rekombinations-Prozesse untersucht, die im Pikosekunden-Bereich liegt, wobei viele angeregte Atome erzeugt werden. Die Ergebnisse zeigen, dass es sogar möglich ist, den Laser-induzierten Expansionsprozess des Clusters bis hin zu Nanosekunden zu verfolgen.


Zeitaufgelöste Xe+ Ionen-Ausbeute nach XUV-Ionisation von gemischten Clustern bestehend aus einem Xenon-Kern und einer Argon-Hülle. Ein NIR-Puls bei zwei verschiedenen Intensitäten wird zum Abtasten verwendet. Bei einer Intensität von 2x10(hoch)13 W/cm(hoch)2 hat die Ionen-Ausbeute ein Maximum bei einer Verzögerungszeit von etwa 3 Pikosekunden aufgrund eines gut bekannten Plasma-Resonanz Effektes. Bei der geringeren Intensität von 2x10(hoch)12 W/cm(hoch)2 steigt das Signal während der ersten 10 Pikosekunden monotonisch an, welches als Zeitskala der Elektronen-Ionen Rekombination identifiziert wird. Bild: MBI/Bernd Schütte


(a) Zweidimensionale Impulsabbildung von Elektronen, die die Impulsverteilung der emittierten Elektronen in paralleler (vertikal) und senkrechter Richtung (horizontal) zur XUV/NIR Laser Polarisationsrichtung zeigt, nach XUV-Ionisation und NIR-Probepuls an Argon Clustern mit einer durchschnittlichen Größe von 3500 Atomen. Die Ring-Struktur entspricht der Ionisation von angeregten Atomen durch den NIR-Puls.

(b) Das entsprechende kinetische Energie-Spektrum zeigt ein Maximum bei einer Energie von 0,6 eV, welcher aus der NIR Einzelphotonen-Ionisation der 4d und 5p angeregten Zustände in Argon resultiert.

Die Erzeugung einer großen Anzahl von Ladungen in einem Cluster durch einen intensiven Lichtpuls kann zur Bildung eines vorübergehenden Nanoplasmas führen, das aus freien Elektronen und Ionen besteht. In der Vergangenheit konnten bereits faszinierende Prozesse in Nanoplasmen beobachtet werden, wie z.B. die Kernfusion oder auch die Erzeugung neutraler Atome mit sehr hohen kinetischen Energien.

Während Nanoplasmen routinemäßig während der Wechselwirkung von Clustern mit intensiven XUV-Pulsen von Freie-Elektronen Lasern erzeugt werden, ist ein detailliertes Verständnis der Prozesse innerhalb des Plasmas herausfordernd. Theoretische Modelle haben vorhergesagt, dass der Großteil der Elektronen im Cluster gefangen bleibt und letztlich mit Ionen rekombinieren kann, sodass sowohl Elektronen als auch Ionen in gewöhnlichen Experimenten nicht beobachtet werden können.

Eine experimentelle Untersuchung dieser Dynamiken ist jedoch äußerst wichtig, da die Prozesse in Clustern komplex und vielfältig sind und ihre detaillierte Vorhersage schwierig ist. Ein vielversprechender Weg zu einem besseren Verständnis der verschiedenen Mechanismen In Nanoplasmen ist die Entwicklung zeitaufgelöster Experimente.

In diesem Zusammenhang sind intensive Quellen aus Höherer Harmonischen Generation (HHG) besonders interessant, die Lichtpulse bis hinunter in den Attosekunden-Bereich erzeugen können. Diese XUV-Quellen im Labor-Maßstab erlauben auf einfache Weise die Durchführung von Pump-Probe Experimenten an Clustern und können die Möglichkeiten, Dynamiken in Clustern zu verstehen, erheblich verbessern.

In einer internationalen Kollaboration angeführt von Forschern des Max-Born-Instituts konnte nun das erste Pump-Probe Experiment an Clustern mit einer intensiven HHG-Quelle durchgeführt werden. In der aktuellen Ausgabe von Physical Review Letters [112, 253401 (2014)] Physical Review Letters 112.253401, (2014), präsentieren Bernd Schütte, Marc Vrakking, Arnaud Rouzée und ihre Kollegen Filippo Campi von der Universität aus Lund und Mathias Arbeiter und Thomas Fennel von der Universität Rostock die Ergebnisse dieser Untersuchungen.

Die Entwicklung einer Technik der Reionization of Excited Atoms from Recombination (REAR) (zu Deutsch: Reionisation angeregter Atome aus der Rekombination) ermöglicht es zum ersten Mal, Information über Ladungszustände vor der Rekombination rückzuschließen.

Mit der Hilfe von Probe-Pulsen im Nahinfrarot (NIR)-Bereich wurde eine überraschend umfangreiche Erzeugung von angeregten Atomen beobachtet, und es konnte gezeigt werden, dass diese Atome aus Rekombinations-Prozessen zwischen Elektronen und Ionen stammen. Es wurde demonstriert, dass Elektronen im Nanoplasma, die durch Photoionisation erzeugt werden, nur für eine kurze Zeitspanne von bis zu 10 Pikosekunden quasi-frei sind, bevor sie Rekombinations-Prozesse mit umgebenden Ionen eingehen. Mehr Information über diese Mechanismen wurde durch die Erzeugung spezieller Cluster erhalten, die aus einem Xenon-Kern und einer Argon-Hülle bestehen.

Diese Untersuchungen haben gezeigt, dass Rekombination bevorzugt im Xenon-Kern des Clusters stattfindet. Es wurde demonstriert, dass die Wellenlänge des ionisierenden Laserpulses, der mit dem Cluster wechselwirkt, nicht wichtig ist: die Erzeugung angeregter Atome aus Rekombinations-Prozessen wurde auch beobachtet, wenn NIR oder blaues Licht anstatt der XUV-Pulse verwendet wurde. Dies zeigt, dass die aktuellen Erkenntnisse generelle Auswirkung haben für die Erklärung früherer Experimente, die in verschiedenen Wellenlängen-Bereichen durchgeführt wurden. Des Weiteren konnte mithilfe der REAR Technik die Expansion des Clusters bis in den Nanosekunden-Bereich verfolgt werden.

Unsere Ergebnisse zeigen die bemerkenswerte Vielseitigkeit intensiver HHG-Pulse für die Studie von dynamischen Prozessen in Clustern. In Zukunft wird die Untersuchung von anderen ausedehnten Systemen wie Biomolekülen von der Verfügbarkeit dieser XUV-Lichtquellen im Labor-Maßstab profitieren können.

Originalveröffentlichung:
Bernd Schütte, Filippo Campi, Mathias Arbeiter, Thomas Fennel, Marc J. J. Vrakking and Arnaud Rouzée: "Tracing electron-ion recombination in nanoplasmas produced by extreme-ultraviolet irradiation of rare-gas clusters",
Physical Review Letters 112.253401,(2014)

Kontakt:
Max-Born-Institut für Nichtlineare Optik und Kurzzeitspektroskopie (MBI)
Max-Born-Str. 2A, 12489 Berlin

Dr. Bernd Schütte Tel: 030 6392 1248
Prof. Marc J.J. Vrakking Tel: 030 6392 1200
Dr. Arnaud Rouzée Tel: 030 6392 1240 

  
Das Max-Born-Institut für Nichtlineare Optik und Kurzzeitspektroskopie (MBI) gehört zum Forschungsverbund Berlin e.V. (FVB), einem Zusammenschluss von acht natur-, lebens- und umweltwissenschaftlichen Instituten in Berlin. In ihnen arbeiten mehr als 1.500 Mitarbeiter. Die vielfach ausgezeichneten Einrichtungen sind Mitglieder der Leibniz-Gemeinschaft. Entstanden ist der Forschungsverbund 1992 in einer einzigartigen historischen Situation aus der ehemaligen Akademie der Wissenschaften der DDR.

Weitere Informationen:

http://www.mbi-berlin.de

Karl-Heinz Karisch | Forschungsverbund Berlin e.V.

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Das anwachsende Ende der Ordnung
27.03.2017 | Universität Konstanz

nachricht In einem Quantenrennen ist jeder Gewinner und Verlierer zugleich
27.03.2017 | Universität Wien

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Das anwachsende Ende der Ordnung

Physiker aus Konstanz weisen sogenannte Mermin-Wagner-Fluktuationen experimentell nach

Ein Kristall besteht aus perfekt angeordneten Teilchen, aus einer lückenlos symmetrischen Atomstruktur – dies besagt die klassische Definition aus der Physik....

Im Focus: Wegweisende Erkenntnisse für die Biomedizin: NAD⁺ hilft bei Reparatur geschädigter Erbinformationen

Eine internationale Forschergruppe mit dem Bayreuther Biochemiker Prof. Dr. Clemens Steegborn präsentiert in 'Science' neue, für die Biomedizin wegweisende Forschungsergebnisse zur Rolle des Moleküls NAD⁺ bei der Korrektur von Schäden am Erbgut.

Die Zellen von Menschen und Tieren können Schäden an der DNA, dem Träger der Erbinformation, bis zu einem gewissen Umfang selbst reparieren. Diese Fähigkeit...

Im Focus: Designer-Proteine falten DNA

Florian Praetorius und Prof. Hendrik Dietz von der Technischen Universität München (TUM) haben eine neue Methode entwickelt, mit deren Hilfe sie definierte Hybrid-Strukturen aus DNA und Proteinen aufbauen können. Die Methode eröffnet Möglichkeiten für die zellbiologische Grundlagenforschung und für die Anwendung in Medizin und Biotechnologie.

Desoxyribonukleinsäure – besser bekannt unter der englischen Abkürzung DNA – ist die Trägerin unserer Erbinformation. Für Prof. Hendrik Dietz und Florian...

Im Focus: Fliegende Intensivstationen: Ultraschallgeräte in Rettungshubschraubern können Leben retten

Etwa 21 Millionen Menschen treffen jährlich in deutschen Notaufnahmen ein. Im Kampf zwischen Leben und Tod zählt für diese Patienten jede Minute. Wenn sie schon kurz nach dem Unfall zielgerichtet behandelt werden können, verbessern sich ihre Überlebenschancen erheblich. Damit Notfallmediziner in solchen Fällen schnell die richtige Diagnose stellen können, kommen in den Rettungshubschraubern der DRF Luftrettung und zunehmend auch in Notarzteinsatzfahrzeugen mobile Ultraschallgeräte zum Einsatz. Experten der Deutschen Gesellschaft für Ultraschall in der Medizin e.V. (DEGUM) schulen die Notärzte und Rettungsassistenten.

Mit mobilen Ultraschallgeräten können Notärzte beispielsweise innere Blutungen direkt am Unfallort identifizieren und sie bei Bedarf auch für Untersuchungen im...

Im Focus: Gigantische Magnetfelder im Universum

Astronomen aus Bonn und Tautenburg in Thüringen beobachteten mit dem 100-m-Radioteleskop Effelsberg Galaxienhaufen, das sind Ansammlungen von Sternsystemen, heißem Gas und geladenen Teilchen. An den Rändern dieser Galaxienhaufen fanden sie außergewöhnlich geordnete Magnetfelder, die sich über viele Millionen Lichtjahre erstrecken. Sie stellen die größten bekannten Magnetfelder im Universum dar.

Die Ergebnisse werden am 22. März in der Fachzeitschrift „Astronomy & Astrophysics“ veröffentlicht.

Galaxienhaufen sind die größten gravitativ gebundenen Strukturen im Universum, mit einer Ausdehnung von etwa zehn Millionen Lichtjahren. Im Vergleich dazu ist...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Wie Menschen wachsen

27.03.2017 | Veranstaltungen

Zweites Symposium 4SMARTS zeigt Potenziale aktiver, intelligenter und adaptiver Systeme

27.03.2017 | Veranstaltungen

Rund 500 Fachleute aus Wissenschaft und Wirtschaft diskutierten über technologische Zukunftsthemen

24.03.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Fließender Übergang zwischen Design und Simulation

27.03.2017 | HANNOVER MESSE

Industrial Data Space macht neue Geschäftsmodelle möglich

27.03.2017 | HANNOVER MESSE

Neue Sicherheitstechnik ermöglicht Teamarbeit

27.03.2017 | HANNOVER MESSE