Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Freiheit der Elektronen währt nur kurz

03.07.2014

Während der Wechselwirkung eines intensiven extrem-ultravioletten (XUV) Laserpulses mit einem Cluster werden viele Ionen und freie Elektronen erzeugt, was zur Bildung eines Plasmas auf der Nanometer-Skala führt.

Ein Großteil der Elektronen bleibt im Cluster gefangen und rekombiniert mit Ionen. In einem neuartigen Ansatz unter der Verwendung einer XUV-Quelle im Labor-Maßstab haben wir nun die Zeitskala dieser Elektronen-Ionen Rekombinations-Prozesse untersucht, die im Pikosekunden-Bereich liegt, wobei viele angeregte Atome erzeugt werden. Die Ergebnisse zeigen, dass es sogar möglich ist, den Laser-induzierten Expansionsprozess des Clusters bis hin zu Nanosekunden zu verfolgen.


Zeitaufgelöste Xe+ Ionen-Ausbeute nach XUV-Ionisation von gemischten Clustern bestehend aus einem Xenon-Kern und einer Argon-Hülle. Ein NIR-Puls bei zwei verschiedenen Intensitäten wird zum Abtasten verwendet. Bei einer Intensität von 2x10(hoch)13 W/cm(hoch)2 hat die Ionen-Ausbeute ein Maximum bei einer Verzögerungszeit von etwa 3 Pikosekunden aufgrund eines gut bekannten Plasma-Resonanz Effektes. Bei der geringeren Intensität von 2x10(hoch)12 W/cm(hoch)2 steigt das Signal während der ersten 10 Pikosekunden monotonisch an, welches als Zeitskala der Elektronen-Ionen Rekombination identifiziert wird. Bild: MBI/Bernd Schütte


(a) Zweidimensionale Impulsabbildung von Elektronen, die die Impulsverteilung der emittierten Elektronen in paralleler (vertikal) und senkrechter Richtung (horizontal) zur XUV/NIR Laser Polarisationsrichtung zeigt, nach XUV-Ionisation und NIR-Probepuls an Argon Clustern mit einer durchschnittlichen Größe von 3500 Atomen. Die Ring-Struktur entspricht der Ionisation von angeregten Atomen durch den NIR-Puls.

(b) Das entsprechende kinetische Energie-Spektrum zeigt ein Maximum bei einer Energie von 0,6 eV, welcher aus der NIR Einzelphotonen-Ionisation der 4d und 5p angeregten Zustände in Argon resultiert.

Die Erzeugung einer großen Anzahl von Ladungen in einem Cluster durch einen intensiven Lichtpuls kann zur Bildung eines vorübergehenden Nanoplasmas führen, das aus freien Elektronen und Ionen besteht. In der Vergangenheit konnten bereits faszinierende Prozesse in Nanoplasmen beobachtet werden, wie z.B. die Kernfusion oder auch die Erzeugung neutraler Atome mit sehr hohen kinetischen Energien.

Während Nanoplasmen routinemäßig während der Wechselwirkung von Clustern mit intensiven XUV-Pulsen von Freie-Elektronen Lasern erzeugt werden, ist ein detailliertes Verständnis der Prozesse innerhalb des Plasmas herausfordernd. Theoretische Modelle haben vorhergesagt, dass der Großteil der Elektronen im Cluster gefangen bleibt und letztlich mit Ionen rekombinieren kann, sodass sowohl Elektronen als auch Ionen in gewöhnlichen Experimenten nicht beobachtet werden können.

Eine experimentelle Untersuchung dieser Dynamiken ist jedoch äußerst wichtig, da die Prozesse in Clustern komplex und vielfältig sind und ihre detaillierte Vorhersage schwierig ist. Ein vielversprechender Weg zu einem besseren Verständnis der verschiedenen Mechanismen In Nanoplasmen ist die Entwicklung zeitaufgelöster Experimente.

In diesem Zusammenhang sind intensive Quellen aus Höherer Harmonischen Generation (HHG) besonders interessant, die Lichtpulse bis hinunter in den Attosekunden-Bereich erzeugen können. Diese XUV-Quellen im Labor-Maßstab erlauben auf einfache Weise die Durchführung von Pump-Probe Experimenten an Clustern und können die Möglichkeiten, Dynamiken in Clustern zu verstehen, erheblich verbessern.

In einer internationalen Kollaboration angeführt von Forschern des Max-Born-Instituts konnte nun das erste Pump-Probe Experiment an Clustern mit einer intensiven HHG-Quelle durchgeführt werden. In der aktuellen Ausgabe von Physical Review Letters [112, 253401 (2014)] Physical Review Letters 112.253401, (2014), präsentieren Bernd Schütte, Marc Vrakking, Arnaud Rouzée und ihre Kollegen Filippo Campi von der Universität aus Lund und Mathias Arbeiter und Thomas Fennel von der Universität Rostock die Ergebnisse dieser Untersuchungen.

Die Entwicklung einer Technik der Reionization of Excited Atoms from Recombination (REAR) (zu Deutsch: Reionisation angeregter Atome aus der Rekombination) ermöglicht es zum ersten Mal, Information über Ladungszustände vor der Rekombination rückzuschließen.

Mit der Hilfe von Probe-Pulsen im Nahinfrarot (NIR)-Bereich wurde eine überraschend umfangreiche Erzeugung von angeregten Atomen beobachtet, und es konnte gezeigt werden, dass diese Atome aus Rekombinations-Prozessen zwischen Elektronen und Ionen stammen. Es wurde demonstriert, dass Elektronen im Nanoplasma, die durch Photoionisation erzeugt werden, nur für eine kurze Zeitspanne von bis zu 10 Pikosekunden quasi-frei sind, bevor sie Rekombinations-Prozesse mit umgebenden Ionen eingehen. Mehr Information über diese Mechanismen wurde durch die Erzeugung spezieller Cluster erhalten, die aus einem Xenon-Kern und einer Argon-Hülle bestehen.

Diese Untersuchungen haben gezeigt, dass Rekombination bevorzugt im Xenon-Kern des Clusters stattfindet. Es wurde demonstriert, dass die Wellenlänge des ionisierenden Laserpulses, der mit dem Cluster wechselwirkt, nicht wichtig ist: die Erzeugung angeregter Atome aus Rekombinations-Prozessen wurde auch beobachtet, wenn NIR oder blaues Licht anstatt der XUV-Pulse verwendet wurde. Dies zeigt, dass die aktuellen Erkenntnisse generelle Auswirkung haben für die Erklärung früherer Experimente, die in verschiedenen Wellenlängen-Bereichen durchgeführt wurden. Des Weiteren konnte mithilfe der REAR Technik die Expansion des Clusters bis in den Nanosekunden-Bereich verfolgt werden.

Unsere Ergebnisse zeigen die bemerkenswerte Vielseitigkeit intensiver HHG-Pulse für die Studie von dynamischen Prozessen in Clustern. In Zukunft wird die Untersuchung von anderen ausedehnten Systemen wie Biomolekülen von der Verfügbarkeit dieser XUV-Lichtquellen im Labor-Maßstab profitieren können.

Originalveröffentlichung:
Bernd Schütte, Filippo Campi, Mathias Arbeiter, Thomas Fennel, Marc J. J. Vrakking and Arnaud Rouzée: "Tracing electron-ion recombination in nanoplasmas produced by extreme-ultraviolet irradiation of rare-gas clusters",
Physical Review Letters 112.253401,(2014)

Kontakt:
Max-Born-Institut für Nichtlineare Optik und Kurzzeitspektroskopie (MBI)
Max-Born-Str. 2A, 12489 Berlin

Dr. Bernd Schütte Tel: 030 6392 1248
Prof. Marc J.J. Vrakking Tel: 030 6392 1200
Dr. Arnaud Rouzée Tel: 030 6392 1240 

  
Das Max-Born-Institut für Nichtlineare Optik und Kurzzeitspektroskopie (MBI) gehört zum Forschungsverbund Berlin e.V. (FVB), einem Zusammenschluss von acht natur-, lebens- und umweltwissenschaftlichen Instituten in Berlin. In ihnen arbeiten mehr als 1.500 Mitarbeiter. Die vielfach ausgezeichneten Einrichtungen sind Mitglieder der Leibniz-Gemeinschaft. Entstanden ist der Forschungsverbund 1992 in einer einzigartigen historischen Situation aus der ehemaligen Akademie der Wissenschaften der DDR.

Weitere Informationen:

http://www.mbi-berlin.de

Karl-Heinz Karisch | Forschungsverbund Berlin e.V.

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Spin-Strom aus Wärme: Neues Material für höhere Effizienz
20.11.2017 | Universität Bielefeld

nachricht cw-Wert wie ein Lkw: FH Aachen testet Weihnachtsbaum im Windkanal
20.11.2017 | FH Aachen

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Transparente Beschichtung für Alltagsanwendungen

Sport- und Outdoorbekleidung, die Wasser und Schmutz abweist, oder Windschutzscheiben, an denen kein Wasser kondensiert – viele alltägliche Produkte können von stark wasserabweisenden Beschichtungen profitieren. Am Karlsruher Institut für Technologie (KIT) haben Forscher um Dr. Bastian E. Rapp einen Werkstoff für solche Beschichtungen entwickelt, der sowohl transparent als auch abriebfest ist: „Fluoropor“, einen fluorierten Polymerschaum mit durchgehender Nano-/Mikrostruktur. Sie stellen ihn in Nature Scientific Reports vor. (DOI: 10.1038/s41598-017-15287-8)

In der Natur ist das Phänomen vor allem bei Lotuspflanzen bekannt: Wassertropfen perlen von der Blattoberfläche einfach ab. Diesen Lotuseffekt ahmen...

Im Focus: Ultrakalte chemische Prozesse: Physikern gelingt beispiellose Vermessung auf Quantenniveau

Wissenschaftler um den Ulmer Physikprofessor Johannes Hecker Denschlag haben chemische Prozesse mit einer beispiellosen Auflösung auf Quantenniveau vermessen. Bei ihrer wissenschaftlichen Arbeit kombinierten die Forscher Theorie und Experiment und können so erstmals die Produktzustandsverteilung über alle Quantenzustände hinweg - unmittelbar nach der Molekülbildung - nachvollziehen. Die Forscher haben ihre Erkenntnisse in der renommierten Fachzeitschrift "Science" publiziert. Durch die Ergebnisse wird ein tieferes Verständnis zunehmend komplexer chemischer Reaktionen möglich, das zukünftig genutzt werden kann, um Reaktionsprozesse auf Quantenniveau zu steuern.

Einer deutsch-amerikanischen Forschergruppe ist es gelungen, chemische Prozesse mit einer nie dagewesenen Auflösung auf Quantenniveau zu vermessen. Dadurch...

Im Focus: Leoniden 2017: Sternschnuppen im Anflug?

Gemeinsame Pressemitteilung der Vereinigung der Sternfreunde und des Hauses der Astronomie in Heidelberg

Die Sternschnuppen der Leoniden sind in diesem Jahr gut zu beobachten, da kein Mondlicht stört. Experten sagen für die Nächte vom 16. auf den 17. und vom 17....

Im Focus: «Kosmische Schlange» lässt die Struktur von fernen Galaxien erkennen

Die Entstehung von Sternen in fernen Galaxien ist noch weitgehend unerforscht. Astronomen der Universität Genf konnten nun erstmals ein sechs Milliarden Lichtjahre entferntes Sternensystem genauer beobachten – und damit frühere Simulationen der Universität Zürich stützen. Ein spezieller Effekt ermöglicht mehrfach reflektierte Bilder, die sich wie eine Schlange durch den Kosmos ziehen.

Heute wissen Astronomen ziemlich genau, wie sich Sterne in der jüngsten kosmischen Vergangenheit gebildet haben. Aber gelten diese Gesetzmässigkeiten auch für...

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

500 Kommunikatoren zu Gast in Braunschweig

20.11.2017 | Veranstaltungen

VDI-Expertenforum „Gefährdungsanalyse Trinkwasser"

20.11.2017 | Veranstaltungen

Technologievorsprung durch Textiltechnik

17.11.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Künstliche neuronale Netze: 5-Achs-Fräsbearbeitung lernt, sich selbst zu optimieren

20.11.2017 | Informationstechnologie

Tonmineral bewässert Erdmantel von innen

20.11.2017 | Geowissenschaften

Hemmung von microRNA-29 schützt vor Herzfibrosen

20.11.2017 | Biowissenschaften Chemie