Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Forscherteam aus Berlin und Rostock beobachtet explodierende Xenon-Nanopartikel

11.10.2016

Röntgenlaser des Forschungszentrums DESY schafft neue Einblicke in die Wechselwirkung von Licht und Materie

Ein internationales Forscherteam um WissenschaftlerInnen der Technischen Universität Berlin und der Universität Rostock konnte mit dem Röntgenlaser FLASH (ein neuartiges Röntgen-Mikroskop des Forschungszentrums DESY in Hamburg) die ultraschnelle lichtgetriebene Explosion von Nanopartikeln aus Xenon beobachten. Die Untersuchung dieser sogenannten Xenon-Cluster liefert neue Einblicke in die fundamentale Wechselwirkung von intensivem Licht mit Materie, wie die Wissenschaftler im Fachblatt „Physical Review Letters“ berichten.


Abb. 1: Explodierender Xenon-Cluster mit freigesetzten Elektronen (blau).

Bild: Uni Rostock / Thomas Fennel


Abb. 2: Mit den Röntgenblitzen des Röntgenlasers FLASH brachten die Forscher die Xenon-Cluster zur Explosion. Mit einem Ionenspektrometer konnten die Wissenschaftler die Explosionsbruchstücke beobachten.

Bild: Daniela Rupp / TU Berlin

„Cluster sind von grundlegender Bedeutung für diese Untersuchung“, erklären Daniela Rupp von der Technischen Universität Berlin und Thomas Fennel von der Universität Rostock. „Sie weisen eine hohe Dichte auf und sind in der Gasphase gleichzeitig sehr gut von der Umgebung isoliert, wodurch eine ungestörte Analyse möglich wird.“

Die Forscher erzeugten die Cluster, indem sie kaltes Xenon-Gas unter Druck ins Vakuum bliesen. „Dabei kühlt das Gas weiter ab, so dass sich zunächst Tröpfchen bilden, die gefrieren und weiter zusammenklumpen, ähnlich wie ein Hagelkorn“, beschreibt Rupp.

... mehr zu:
»Cluster »Elektronen »Energie »Explosion »Ionen »Plasma »desy

Diese etwa 400 Nanometer (millionstel Millimeter) kleinen Xenon-Nanopartikel beschossen die Forscher mit den ultrakurzen, intensiven FLASH-Laserblitzen, die für einige billiardstel Sekunden eine Intensität von bis zu 500 Billionen Watt pro Quadratzentimeter erreichten, erläutert Ko-Autor Rolf Treusch von DESY, Forschungskoordinator bei FLASH.

Zum Vergleich: Sonnenlicht hat auf dem Erdboden eine Intensität von etwa 0,1 Watt pro Quadratzentimeter. Der helle Strahlungsblitz entriss den Xenon-Atomen im Cluster zahlreiche Elektronen und es bildete sich ein Plasma – ein heißes Gas aus elektrisch geladenen Atomen, sogenannten Ionen, und darum herum flitzenden Elektronen (Abb. 1).

Die Physiker konnten in ihrer Versuchsanordnung (Abb. 2) die Entwicklung individueller Xenon-Cluster verfolgen und deren Größe sowie die genaue Energie bestimmen, mit der sie getroffen wurden. „Dies wurde möglich, da wir sowohl Momentaufnahmen der Cluster vor ihrer Zerstörung machen konnten, als auch die Ladungszustände der Bruchstücke nach der Explosion präzise vermessen", berichtet Rupp.

Bei diesen Untersuchungen identifizierten die Wissenschaftler unter anderem eine bislang nicht beachtete Heizung in dem Plasma: „Jedes Mal, wenn sich ein Elektron wieder mit einem Xenon-Atom verbindet, gibt es Energie an das umgebende Plasma ab”, erläutert Fennel. „Dadurch bekommen am Ende solche Xenon-Ionen, die nicht mit Elektronen rekombinieren, prozentual mehr Energie – die Elektronen heizen diese Ionen quasi auf.”

„Die Ergebnisse lassen sich hervorragend mit der Theorie vereinbaren“, erklärt Fennel weiter. „Berücksichtigt man in der Theorie diese sogenannte ‘Rekombinationsheizung’, beschreibt sie genau unsere Beobachtungen. In dieser Untersuchung ergänzen sich theoretische Physik und Experimentalphysik in ausgezeichneter Weise.”

Neben den WissenschaftlerInnen der TU Berlin, der Universität Rostock und bei DESY, waren an der Arbeit ForscherInnen von der La Trobe University in Australien, dem US-Forschungszentrum SLAC in Kalifornien, dem Helmholtz-Zentrum Berlin, der Universität Münster und dem Argonne National Laboratory in den USA beteiligt.

Kontakt:
Technische Universität Berlin
Dr. Daniela Rupp
Arbeitsgruppe „Cluster und Nanokristalle“
Institut für Optik und Atomare Physik
Tel.: 030 314 23008
daniela.rupp@physik.tu-berlin.de

www.cluster-ag.tu-berlin.de

Universität Rostock
Dr. Thomas Fennel
Arbeitsgruppe „Theoretische Clusterphysik und Nanophotonik“
Institut für Physik
Tel.: 0381 498 6815
thomas.fennel@uni-rostock.de

www.physik.uni-rostock.de/clustertheorie

Originalarbeit:
Recombination-enhanced surface expansion of clusters in intense soft X-ray laser pulses; Daniela Rupp, Leonie Flückiger, Marcus Adolph, Tais Gorkhover, Maria Krikunova, Jan Philippe Müller, Maria Müller, Tim Oelze, Yevheniy Ovcharenko, Benjamin Röben, Mario Sauppe, Sebastian Schorb, David Wolter, Rolf Mitzner, Michael Wöstmann, Sebastian Roling, Marion Harmand, Rolf Treusch, Mathias Arbeiter, Thomas Fennel, Christoph Bostedt, and Thomas Möller; „Physical Review Letters“, 2016

DOI: 10.1103/PhysRevLett.117.153401

Weitere Informationen:

http://journals.aps.org/prl/abstract/10.1103/PhysRevLett.117.153401

Ingrid Rieck | Universität Rostock

Weitere Berichte zu: Cluster Elektronen Energie Explosion Ionen Plasma desy

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Schnell wachsende Galaxien könnten kosmisches Rätsel lösen – zeigen früheste Verschmelzung
26.05.2017 | Max-Planck-Institut für Astronomie

nachricht 3D-Graphen: Experiment an BESSY II zeigt, dass optische Eigenschaften einstellbar sind
24.05.2017 | Helmholtz-Zentrum Berlin für Materialien und Energie GmbH

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Lässt sich mit Boten-RNA das Immunsystem gegen Staphylococcus aureus scharf schalten?

Staphylococcus aureus ist aufgrund häufiger Resistenzen gegenüber vielen Antibiotika ein gefürchteter Erreger (MRSA) insbesondere bei Krankenhaus-Infektionen. Forscher des Paul-Ehrlich-Instituts haben immunologische Prozesse identifiziert, die eine erfolgreiche körpereigene, gegen den Erreger gerichtete Abwehr verhindern. Die Forscher konnten zeigen, dass sich durch Übertragung von Protein oder Boten-RNA (mRNA, messenger RNA) des Erregers auf Immunzellen die Immunantwort in Richtung einer aktiven Erregerabwehr verschieben lässt. Dies könnte für die Entwicklung eines wirksamen Impfstoffs bedeutsam sein. Darüber berichtet PLOS Pathogens in seiner Online-Ausgabe vom 25.05.2017.

Staphylococcus aureus (S. aureus) ist ein Bakterium, das bei weit über der Hälfte der Erwachsenen Haut und Schleimhäute besiedelt und dabei normalerweise keine...

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: Orientierungslauf im Mikrokosmos

Physiker der Universität Würzburg können auf Knopfdruck einzelne Lichtteilchen erzeugen, die einander ähneln wie ein Ei dem anderen. Zwei neue Studien zeigen nun, welches Potenzial diese Methode hat.

Der Quantencomputer beflügelt seit Jahrzehnten die Phantasie der Wissenschaftler: Er beruht auf grundlegend anderen Phänomenen als ein herkömmlicher Rechner....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Tumult im trägen Elektronen-Dasein

Ein internationales Team von Physikern hat erstmals das Streuverhalten von Elektronen in einem nichtleitenden Material direkt beobachtet. Ihre Erkenntnisse könnten der Strahlungsmedizin zu Gute kommen.

Elektronen in nichtleitenden Materialien könnte man Trägheit nachsagen. In der Regel bleiben sie an ihren Plätzen, tief im Inneren eines solchen Atomverbunds....

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Meeresschutz im Fokus: Das IASS auf der UN-Ozean-Konferenz in New York vom 5.-9. Juni

24.05.2017 | Veranstaltungen

Diabetes Kongress in Hamburg beginnt heute: Rund 6000 Teilnehmer werden erwartet

24.05.2017 | Veranstaltungen

Wissensbuffet: „All you can eat – and learn”

24.05.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

DFG fördert 15 neue Sonderforschungsbereiche (SFB)

26.05.2017 | Förderungen Preise

Lässt sich mit Boten-RNA das Immunsystem gegen Staphylococcus aureus scharf schalten?

26.05.2017 | Biowissenschaften Chemie

Unglaublich formbar: Lesen lernen krempelt Gehirn selbst bei Erwachsenen tiefgreifend um

26.05.2017 | Gesellschaftswissenschaften