Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Forscher zeigen, warum manche Sterne so schön sterben

16.09.2013
Wie sich die wohl prachtvollsten Objekte im Weltall bilden, zeigt eine neue Studie.

Am Ende ihres Lebens verwandeln sich Sterne zu schönsten Objekten. Um ihren ausgebrannten Kern formieren sich bizarre Wolken aus leuchtendem Gas, die so genannten planetarischen Nebel.


Wie der hier gezeigte Calabash-Nebel (1 Lichtjahr lang) könnte IRAS 15445 in einigen hundert Jahren aussehen. © NASA/ESA & Valentin Bujarrabal (Observatorio Astronomico Nacional, Spanien)


Ein Jet energiereicher Teilchen (im Bild Magenta) gestaltet die Umgebung des Sterns IRAS 15445-5449. Der Stern wird durch den Staub um ihn herum verdeckt. © E. Lagadec/ESO; A. Pérez Sánchez

Völlig ungeklärt war bislang die Frage, wie diese symmetrischen Gebilde entstehen. Astronomen der Universität Bonn haben nun zusammen mit Kollegen aus Schweden und Australien eine mögliche Antwort vorgelegt: Demnach scheinen gewaltige Magnetkräfte der Grund dafür zu sein, dass die Sterne in Schönheit sterben.

Die Wissenschaftler hatten einen 230.000 Lichtjahre entfernten Stern unter die Lupe genommen. Der Himmelskörper mit dem prosaischen Namen IRAS 15445-5449 ist momentan im Begriff, sich in einen planetarischen Nebel zu verwandeln. Bei ihren Beobachtungen machten die Astronomen eine überraschende Entdeckung: „In unseren Daten finden wir klare Anzeichen für einen Jet aus äußerst schnellen Gaspartikeln“, erläutert Andrés Pérez Sánchez, der momentan an der Universität Bonn promoviert.

Ein Jet ist ein gerichteter Gastrom, der wie eine Nadel vom Himmelskörper weg weist. Der Jet von IRAS 15445-5449 ist extrem energiereich – die Partikel in ihm bewegen sich nahezu mit Lichtgeschwindigkeit. Es ist das erste Mal, dass ein solch energiereicher Jet bei einem alternden Stern von der Größe der Sonne beobachtet wurde. Nach der Geschwindigkeit der Gaspartikel zu schließen, müssen gewaltige Kräfte am Werke sein: „Die Teilchen in dem Jet bewegen sich auf einer spiralförmigen Bahn durch ein äußerst starkes Magnetfeld“, erklärt Studien-Koautor Dr. Wouter Vlemmings vom Onsala-Observatorium in Schweden.

Sturzgeburt im All

Der Jet bläst die Gasteilchen ins All, die später den planetarischen Nebel um den sterbenden Stern formen. „Es wird wahrscheinlich nur wenige hundert Jahre dauern, bis dieser Prozess abgeschlossen ist und der Nebel aufgrund der Reststrahlung des Sterns zu leuchten beginnt“, vermutet die australische Astronomin Jessica Chapman. Für Astronomen wäre das ein äußerst kurzer Zeitraum – eine wahre Sturzgeburt im All.

Planetarische Nebel entstehen aus Sternen mit einer ähnlichen Masse wie der Sonne. Wenn ein derartiger Stern verglüht, bleibt ein heißer Kern. Die Strahlung, die von diesem Kern ausgeht, ist so intensiv, dass sie das umgebende Gas zum Leuchten bringt. Ungeklärt war bislang, wie dieser Gasnebel seine bizarre Form erhält. Dafür könnte der hochenergetische Jet verantwortlich sein.

Ob auch unsere Sonne in vielen Milliarden Jahren in der Schönheit eines planetarischen Nebels sterben wird, wissen die Forscher bislang noch nicht. Denn es ist rätselhaft, wie ein relativ kleiner Himmelskörper wie die Sonne einen derart energiereichen Jet überhaupt bilden kann. „Möglicherweise hat IRAS 15445-5449 einen Begleiter, den wir mit unseren Teleskopen nicht sehen können“, spekuliert Andrés Pérez Sánchez. „Er könnte für die Entstehung des Jets verantwortlich sein.“

Die Wissenschaftler hoffen nun unter anderem auf das neue ALMATeleskop in den chilenischen Anden. Es könnte möglicherweise Licht ins Dunkel bringen. Andrés Pérez Sánchez: „Mit ALMA und zukünftigen Teleskopen wie dem geplanten Square Kilometer Array werden wir hoffentlich herausfinden können, welche Sterne solche Jets formen und wie sie dies machen.“

Publikation:

A synchrotron jet from a post-asymptotic giant branch star; Monthly Notices of the Royal Astronomical Society, Oxford University Press (http://dx.doi.org/10.1093/mnrasl/slt117). Andres Pérez Sánchez (Argelander-Institut für Astronomie, Bonn University, Germany), Wouter Vlemmings (Onsala Space Observatory, Chalmers), Daniel Tafoya (Onsala Space Observatory, Chalmers and Centro de Radioastronomia y Astrofisica, UNAM, Morelia, Mexico) and Jessica Chapman (CSIRO, Australia).

Kontakt:
Andres Pérez Sanchez
Argelander-Institut für Astronomie
Universität Bonn
Telefon: 0228/73-3521
E-Mail: aperez@astro.uni-bonn.de

Klaus Herkenrath | idw
Weitere Informationen:
http://www.uni-bonn.de

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Topologische Isolatoren: Neuer Phasenübergang entdeckt
17.10.2017 | Helmholtz-Zentrum Berlin für Materialien und Energie GmbH

nachricht Vorhersagen bestätigt: Schwere Elemente bei Neutronensternverschmelzungen nachgewiesen
17.10.2017 | GSI Helmholtzzentrum für Schwerionenforschung GmbH

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Topologische Isolatoren: Neuer Phasenübergang entdeckt

Physiker des HZB haben an BESSY II Materialien untersucht, die zu den topologischen Isolatoren gehören. Dabei entdeckten sie einen neuen Phasenübergang zwischen zwei unterschiedlichen topologischen Phasen. Eine dieser Phasen ist ferroelektrisch: das bedeutet, dass sich im Material spontan eine elektrische Polarisation ausbildet, die sich durch ein äußeres elektrisches Feld umschalten lässt. Dieses Ergebnis könnte neue Anwendungen wie das Schalten zwischen unterschiedlichen Leitfähigkeiten ermöglichen.

Topologische Isolatoren zeichnen sich dadurch aus, dass sie an ihren Oberflächen Strom sehr gut leiten, während sie im Innern Isolatoren sind. Zu dieser neuen...

Im Focus: Smarte Sensoren für effiziente Prozesse

Materialfehler im Endprodukt können in vielen Industriebereichen zu frühzeitigem Versagen führen und den sicheren Gebrauch der Erzeugnisse massiv beeinträchtigen. Eine Schlüsselrolle im Rahmen der Qualitätssicherung kommt daher intelligenten, zerstörungsfreien Sensorsystemen zu, die es erlauben, Bauteile schnell und kostengünstig zu prüfen, ohne das Material selbst zu beschädigen oder die Oberfläche zu verändern. Experten des Fraunhofer IZFP in Saarbrücken präsentieren vom 7. bis 10. November 2017 auf der Blechexpo in Stuttgart zwei Exponate, die eine schnelle, zuverlässige und automatisierte Materialcharakterisierung und Fehlerbestimmung ermöglichen (Halle 5, Stand 5306).

Bei Verwendung zeitaufwändiger zerstörender Prüfverfahren zieht die Qualitätsprüfung durch die Beschädigung oder Zerstörung der Produkte enorme Kosten nach...

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

DFG unterstützt Kongresse und Tagungen - Dezember 2017

17.10.2017 | Veranstaltungen

Intelligente Messmethoden für die Bauwerkssicherheit: Fachtagung „Messen im Bauwesen“ am 14.11.2017

17.10.2017 | Veranstaltungen

Meeresbiologe Mark E. Hay zu Gast bei den "Noblen Gesprächen" am Beutenberg Campus in Jena

16.10.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Latest News

Plant escape from waterlogging

17.10.2017 | Life Sciences

Study suggests oysters offer hot spot for reducing nutrient pollution

17.10.2017 | Life Sciences

Breaking: the first light from two neutron stars merging

17.10.2017 | Physics and Astronomy