Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Forscher verwandeln Diamant in Graphit

24.11.2017

Per Röntgenlaser hat ein internationales Forscherteam Diamant in Graphit verwandelt. Was auf den ersten Blick nicht gerade erstrebenswert erscheint, ist ein entscheidender Schritt, um das grundlegende Verhalten von Festkörpern unter energiereicher Bestrahlung zu verstehen. Erstmals konnte das Team in seinen Experimenten den zeitlichen Ablauf der sogenannten Graphitisierung von Diamant beobachten. Die Wissenschaftler um Franz Tavella vom US-Beschleunigerzentrum SLAC, Sven Toleikis von DESY sowie Beata Ziaja von DESY und dem Institut für Kernphysik der Polnischen Akademie der Wissenschaften im Fachjournal „High Energy Density Physics“.

Diamant und Graphit sind unterschiedliche Formen von Kohlenstoff, die sich durch ihre innere Kristallstruktur unterscheiden. Diamant ist die Hochdruck-Variante, die sich im Inneren der Erde bildet und unter unseren Normalbedingungen an der Erdoberfläche metastabil ist. Das bedeutet, Diamant wandelt sich unter Normalbedingungen von selbst in Graphit um, wenn der Vorgang mit ausreichender Energiezufuhr angestoßen wird.


Diamant und Graphit sind zwei unterschiedliche Formen von Kohlenstoff. Den Ablauf der sogenannten Graphitisierung von Diamant haben die Forscher nun per Röntgenlaser detailliert verfolgt.

Bild: DESY, Gesine Born

Es gibt dazu verschiedene Wege, unter anderem durch Erhitzen unter Ausschluss von Sauerstoff oder sogar durch mechanische Schläge. Der umgekehrte Weg funktioniert auch: Mit Hitze und Hochdruck lassen sich aus Graphit künstliche Diamanten formen, die bereits einen erheblichen weltweiten Markt darstellen. „Den Graphitisierungsprozess zu verstehen, ist – abgesehen von den grundlegenden Aspekten – für alle diamantbasierten Technologien von Bedeutung, da Diamant zunehmend für praktische Anwendungen genutzt wird“, schreiben die Forscher.

Die Forscher hatten kleine, nur 0,3 Millimeter dünne Diamantscheiben mit den ultrakurzen Blitzen des italienischen Freie-Elektronen-Röntgenlasers FERMI in Triest beschossen. Derart intensive Laserpulse zerstören normalerweise die innere Ordnung eines Festkörpers, die daraus folgende innere Unordnung nennen Forscher amorph. Diamant ist dabei eine Ausnahme:

Seine innere Struktur geht durch den Beschuss in eine andere Ordnung über, die aus dem Diamanten Graphit macht. „Es war bereits grundsätzlich bekannt, dass Diamant graphitisiert, wenn man genügend Energie hineinschießt“, erläutert Toleikis. „Aber es war nicht bekannt, wie das genau passiert.“

Dabei gibt es zwei mögliche Pfade: Den gewöhnlichen sogenannten thermischen Übergang, bei dem die absorbierte Energie auf das Kristallgitter im Diamant übertragen wird, bis es sich schließlich in der Graphitstruktur neu organisiert. Und den nicht-thermischen Modus, bei dem bereits die Energie, die nur von einem kleinen Teil der Elektronen im Diamanten absorbiert wird, ausreicht, um die inneren Potenzialflächen zu verschieben und so eine Neuorganisation des Kristallgitters auszulösen. „Der nicht-thermische Übergang ist viel schneller als der thermische, der auf der Skala von Pikoskunden abläuft“, berichtet Ziaja. Eine Pikosekunde ist eine billionstel Sekunde.

Zusätzlich zu den Experimenten haben die DESY-Forscher Nikita Medvedev, Victor Tkachenko und Beata Ziaja eine Computersimulation für den röntgeninduzierten Phasenübergang in Diamant entwickelt. „Unser Programm sagt vorher, dass der untersuchte Übergang nicht-thermisch abläuft, und unsere Experimente haben das bestätigt“, sagt Ziaja, die am Hamburger Center for Free-Electron Laser Science (CFEL) arbeitet, einer Kooperation von DESY, Universität Hamburg und der Max-Planck-Gesellschaft.

Mit den nur etwa 50 Femtosekunden kurzen Röntgenblitzen von FERMI konnten die Forscher den Ablauf des Phasenübergangs verfolgen und seine Dauer zu lediglich etwa 150 Femtosekunden bestimmen. „Es ist das erste Mal, dass dies zeitaufgelöst beobachtet werden konnte“, unterstreicht Toleikis. Eine Femtosekunde (eine billiardstel Sekunde) ist tausend Mal kürzer als eine Pikosekunde.

„Die Röntgenblitze regen die Elektronen an“, erklärt Hauptautor Tavella. „Wenn sich nur etwa 1,5 Prozent der Elektronen in einem angeregten Zustand befinden, beginnt der Kristall bereits, seine innere Organisation zu verändern und in den Graphit-Zustand zu kippen.“ Die Beobachtungen beantworten nicht nur die Frage, wie Diamant zu Graphit wird, sie bestätigen auch das für die Simulation entwickelte Computerprogramm.

„Wir können das Programm jetzt auch für andere Materialien benutzen und haben beispielsweise bereits Berechnungen für Silizium und Galliumarsenid gemacht“, berichtet Ziaja. „Es kann für beliebige Anregungsexperimente mit Röntgenlasern benutzt werden.“ Wegen der großen industriellen Bedeutung von Diamant sind seine Stabilität und die Frage der Graphitisierung unter verschiedenen Faktoren wie Hochdruck, Beschuss mit optischen Lasern und Hitze untersucht worden. Erst Freie-Elektronen-Laser mit ihren ultrakurzen Blitzen haben jedoch die Forscher in die Lage versetzt, den Phasenübergang auf der Femtosekunden-Skala zu verfolgen.

An der Studie beteiligt waren Wissenschaftler vom US-Beschleunigerzentrum SLAC, von DESY, von der Hochschule Emden/Leer, von der Universität Oldenburg, vom Helmholtz-Zentrum Dresden-Rossendorf, von der Tschechischen Akademie der Wissenschaften, vom italienischen Synchrotronzentrum Elettra, vom Helmholtz-Institut Jena, von der Universität Hamburg, vom europäischen Röntgenlaser European XFEL und von der Polnischen Akademie der Wissenschaften.


DESY zählt zu den weltweit führenden Beschleunigerzentren und erforscht die Struktur und Funktion von Materie – vom Wechselspiel kleinster Elementarteilchen, dem Verhalten neuartiger Nanowerkstoffe und lebenswichtiger Biomoleküle bis hin zu den großen Rätseln des Universums. Die Teilchenbeschleuniger und die Nachweisinstrumente, die DESY an seinen Standorten in Hamburg und Zeuthen entwickelt und baut, sind einzigartige Werkzeuge für die Forschung. DESY ist Mitglied der Helmholtz-Gemeinschaft und wird zu 90 Prozent vom Bundesministerium für Bildung und Forschung und zu 10 Prozent von den Ländern Hamburg und Brandenburg finanziert.

Originalveröffentlichung
Soft x-ray induced femtosecond solid-to-solid phase transition; Franz Tavella, Hauke Höppner, Victor Tkachenko, Nikita Medvedev, Flavio Capotondi, Torsten Golz, Yun Kai, Michele Manfredda, Emanuele Pedersoli, Mark J. Prandolini, Nikola Stojanovic, Takanori Tanikawa, Ulrich Teubner, Sven Toleikis, Beata Ziaja; „High Energy Density Physics”, 2017; DOI: 10.1016/j.hedp.2017.06.001

Weitere Informationen:

http://www.desy.de/aktuelles/news_suche/index_ger.html?openDirectAnchor=1317&... - Pressemitteilung im Web

Dr. Thomas Zoufal | idw - Informationsdienst Wissenschaft

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Der überraschend schnelle Fall des Felix Baumgartner
14.12.2017 | Technische Universität München

nachricht Eine blühende Sternentstehungsregion
14.12.2017 | ESO Science Outreach Network - Haus der Astronomie

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Nanostrukturen steuern Wärmetransport: Bayreuther Forscher entdecken Verfahren zur Wärmeregulierung

Der Forschergruppe von Prof. Dr. Markus Retsch an der Universität Bayreuth ist es erstmals gelungen, die von der Temperatur abhängige Wärmeleitfähigkeit mit Hilfe von polymeren Materialien präzise zu steuern. In der Zeitschrift Science Advances werden diese fortschrittlichen, zunächst für Laboruntersuchungen hergestellten Funktionsmaterialien beschrieben. Die hiermit gewonnenen Erkenntnisse sind von großer Relevanz für die Entwicklung neuer Konzepte zur Wärmedämmung.

Von Schmetterlingsflügeln zu neuen Funktionsmaterialien

Im Focus: Lange Speicherung photonischer Quantenbits für globale Teleportation

Wissenschaftler am Max-Planck-Institut für Quantenoptik erreichen mit neuer Speichertechnik für photonische Quantenbits Kohärenzzeiten, welche die weltweite...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Neue Einblicke in die Materie: Hochdruckforschung in Kombination mit NMR-Spektroskopie

Forschern der Universität Bayreuth und des Karlsruhe Institute of Technology (KIT) ist es erstmals gelungen, die magnetische Kernresonanzspektroskopie (NMR) in Experimenten anzuwenden, bei denen Materialproben unter sehr hohen Drücken – ähnlich denen im unteren Erdmantel – analysiert werden. Das in der Zeitschrift Science Advances vorgestellte Verfahren verspricht neue Erkenntnisse über Elementarteilchen, die sich unter hohen Drücken oft anders verhalten als unter Normalbedingungen. Es wird voraussichtlich technologische Innovationen fördern, aber auch neue Einblicke in das Erdinnere und die Erdgeschichte, insbesondere die Bedingungen für die Entstehung von Leben, ermöglichen.

Diamanten setzen Materie unter Hochdruck

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Mit allen Sinnen! - Sensoren im Automobil

14.12.2017 | Veranstaltungen

Materialinnovationen 2018 – Werkstoff- und Materialforschungskonferenz des BMBF

13.12.2017 | Veranstaltungen

Innovativer Wasserbau im 21. Jahrhundert

13.12.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Was für IT-Manager jetzt wichtig ist

14.12.2017 | Unternehmensmeldung

30 Baufritz-Läufer beim 25. Erkheimer Nikolaus-Straßenlauf

14.12.2017 | Unternehmensmeldung

Mit allen Sinnen! - Sensoren im Automobil

14.12.2017 | Veranstaltungsnachrichten