Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Forscher der TU Darmstadt entwickeln revolutionären Terahertz-Sender

12.01.2012
Ein an der TU Darmstadt entwickelter Terahertz-Sender erzeugt die höchste Terahertz-Frequenz, die jemals von einem elektronischen Sender erreicht wurde.

Gleichzeitig ist der neuartige Sender winzig klein und funktioniert bei Raumtemperatur – damit könnte er neuen Anwendungen der Terahertz-Strahlung den Weg ebnen, etwa bei der zerstörungsfreien Materialprüfung oder der medizinischen Diagnostik.


Der Darmstädter Terahertz-Sender emittiert die Rekordfrequenz von 1,111 Terahertz. Bei der Miniaturisierung ihres Bauelementes gingen die Forscher an die Grenze des technsich Machbaren.
Foto: TU Darmstadt

Mithilfe einer Strahlung, die alltägliche Materialien wie Kunststoff, Papier, Textilien oder Keramiken durchdringt, ließe sich die Qualität eines Werkstückes zerstörungsfrei prüfen; Verbrennungsprozesse könnten in einem laufenden Motor analysiert, Postpakete und Briefe auf gefährliche biologische Substanzen geprüft werden, ohne sie öffnen zu müssen. All das möglich machen könnte die Terahertz (THz)-Strahlung, deren Wellenlänge zwischen einem Zehntelmillimeter und einem Millimeter liegt. Im Alltag von Forschung und Entwicklung ist die Terahertz-Strahlung jedoch noch nicht angekommen – sowohl Sender als auch Empfänger von Terahertz-Strahlung sind bislang sehr groß und sehr teuer.

Das könnte bald anders werden: Darmstädter Physiker und Ingenieure haben einen Sender für Terahertz-Strahlung entwickelt, der kleiner als ein Quadratmillimeter ist und deren Herstellungsprozess auf mehr oder weniger herkömmlicher Halbleitertechnologie basiert. Zudem stellten die Forscher um Dr. Michael Feiginov vom Institut für Mikrowellentechnik und Photonik der TU Darmstadt einen neuen Rekord bei der Frequenz auf: Ihre Quelle, eine so genannte Resonanztunneldiode (kurz: RTD-Diode), sendet mit einer Frequenz von 1,111 Terahertz.

Höchste jemals erreichte Frequenz eines aktiven Halbleiterbauelements

"Das ist die höchste Frequenz, die ein aktives Halbleiterbauelement jemals erreicht hat", sagt Feiginov. Theoretisch konnte der Physiker außerdem zeigen, dass ein solch kleiner Sender, wie ihn die Darmstädter Forschergruppe nun hergestellt hat, noch deutlich höhere Frequenzen bis drei Terahertz erzeugen kann. "Das galt bislang in der Terahertzforschung als unmöglich", so Feiginov, der den Sender in den kommenden Jahren weiterentwickeln will, sodass er diese höheren Frequenzen tatsächlich erreicht. Dadurch könnte die Materialanalyse mithilfe von Terahertz-Strahlung bei einer höheren Auflösung durchgeführt werden als dies mit niedrigeren Terahertz-Frequenzen möglich ist – auf den Bildern wären dann kleinere Details zu erkennen.

Dass die RTD-Diode der Darmstädter Wissenschaftler zudem bei Raumtemperatur funktioniert, macht sie noch attraktiver für technische Anwendungen. "Sie könnte zum Beispiel für spektroskopische Untersuchungen an Molekülen dienen, die im Terahertz-Bereich ihre Resonanzen haben", sagt Feiginov. Das bedeutet, dass Stoffe, die sich bislang der Spektralanalyse entziehen, mit dieser in der Wissenschaft weit verbreiteten Methode im THz-Bereich untersucht werden könnten. Davon könne unter anderem die Medizin profitieren, etwa indem krankes von gesundem Gewebe im Körper unterschieden werden könnte, meint Feiginov. Da aktive Halbleiterbauelemente, zu denen auch der Darmstädter Terahertz-Sender zählt, das Herz moderner Informations- und Kommunikationstechnologien und jedes elektronischen Geräts sind, geht Feiginov von vielen weiteren Anwendungsgebieten aus, die sich heute jedoch noch kaum vorhersagen lassen: "Eine höhere Frequenz der Bauteile würde zu neuen Anwendungen oder Einsatzgebieten bei Computern, Handys und anderen elektronischen Geräten führen", betont der Physiker.

Bei der Miniaturisierung ihres Bauelementes gingen die Darmstädter Forscher in den vergangenen Jahren fast an die Grenze des technisch Möglichen. Das Herz der RTD-Diode ist eine so genannte Doppel-Barriere-Struktur, in die ein so genannter Quantum-Well (kurz QW) eingebettet ist. Beim QW handelt sich um eine sehr dünne Schicht des Halbleiters Indium-Gallium-Arsenid, die zwischen zwei äußerst dünnen Barriere-Schichten des Halbleiters Aluminium-Arsenid eingebettet ist. Jede der Schichten ist ein bis wenige Nanometer (Millionstel Millimeter) dünn. Diese Doppel-Barriere-Struktur sorgt mithilfe eines quantenmechanischen Effektes dafür, dass elektrische Schwingungen in einem Terahertz-Oszillator nicht abklingen, sondern immer wieder verstärkt werden, so dass eine konstante Terahertz-Strahlung emittiert wird. Bei der Herstellung ihrer Diode arbeiteten die TU-Forscher mit dem Darmstädter Hersteller von elektronischen Bauelementen ACST GmbH zusammen.

Pressekontakt
Dr. Michael Feiginov
Tel. 06151/16-2762
feiginov@ont.tu-darmstadt.de

Jörg Feuck | idw
Weitere Informationen:
http://www.tu-darmstadt.de
http://apl.aip.org/resource/1/applab/v99/i23/p233506_s1

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Biophysik - Blitzlicht aus der Nanowelt
24.04.2018 | Ludwig-Maximilians-Universität München

nachricht Moleküle brillant beleuchtet
23.04.2018 | Max-Planck-Institut für Quantenoptik

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: BAM@Hannover Messe: Innovatives 3D-Druckverfahren für die Raumfahrt

Auf der Hannover Messe 2018 präsentiert die Bundesanstalt für Materialforschung und -prüfung (BAM), wie Astronauten in Zukunft Werkzeug oder Ersatzteile per 3D-Druck in der Schwerelosigkeit selbst herstellen können. So können Gewicht und damit auch Transportkosten für Weltraummissionen deutlich reduziert werden. Besucherinnen und Besucher können das innovative additive Fertigungsverfahren auf der Messe live erleben.

Pulverbasierte additive Fertigung unter Schwerelosigkeit heißt das Projekt, bei dem ein Bauteil durch Aufbringen von Pulverschichten und selektivem...

Im Focus: BAM@Hannover Messe: innovative 3D printing method for space flight

At the Hannover Messe 2018, the Bundesanstalt für Materialforschung und-prüfung (BAM) will show how, in the future, astronauts could produce their own tools or spare parts in zero gravity using 3D printing. This will reduce, weight and transport costs for space missions. Visitors can experience the innovative additive manufacturing process live at the fair.

Powder-based additive manufacturing in zero gravity is the name of the project in which a component is produced by applying metallic powder layers and then...

Im Focus: IWS-Ingenieure formen moderne Alu-Bauteile für zukünftige Flugzeuge

Mit Unterdruck zum Leichtbau-Flugzeug

Ingenieure des Fraunhofer-Instituts für Werkstoff- und Strahltechnik (IWS) in Dresden haben in Kooperation mit Industriepartnern ein innovatives Verfahren...

Im Focus: Moleküle brillant beleuchtet

Physiker des Labors für Attosekundenphysik, der Ludwig-Maximilians-Universität und des Max-Planck-Instituts für Quantenoptik haben eine leistungsstarke Lichtquelle entwickelt, die ultrakurze Pulse über einen Großteil des mittleren Infrarot-Wellenlängenbereichs generiert. Die Wissenschaftler versprechen sich von dieser Technologie eine Vielzahl von Anwendungen, unter anderem im Bereich der Krebsfrüherkennung.

Moleküle sind die Grundelemente des Lebens. Auch wir Menschen bestehen aus ihnen. Sie steuern unseren Biorhythmus, zeigen aber auch an, wenn dieser erkrankt...

Im Focus: Molecules Brilliantly Illuminated

Physicists at the Laboratory for Attosecond Physics, which is jointly run by Ludwig-Maximilians-Universität and the Max Planck Institute of Quantum Optics, have developed a high-power laser system that generates ultrashort pulses of light covering a large share of the mid-infrared spectrum. The researchers envisage a wide range of applications for the technology – in the early diagnosis of cancer, for instance.

Molecules are the building blocks of life. Like all other organisms, we are made of them. They control our biorhythm, and they can also reflect our state of...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

infernum-Tag 2018: Digitalisierung und Nachhaltigkeit

24.04.2018 | Veranstaltungen

Fraunhofer eröffnet Community zur Entwicklung von Anwendungen und Technologien für die Industrie 4.0

23.04.2018 | Veranstaltungen

Mars Sample Return – Wann kommen die ersten Gesteinsproben vom Roten Planeten?

23.04.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Demographie beeinflusst Brutfürsorge bei Regenpfeifern

25.04.2018 | Biowissenschaften Chemie

Die Zukunft des Fliegens auf dem Prüfstand

25.04.2018 | Maschinenbau

Rittal digitalisiert Fertigung - Produktion weltweit nach Industrie 4.0

25.04.2018 | HANNOVER MESSE

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics