Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Forscher "sprechen" via Schall mit Atomen

25.09.2014

Quantenphysik-Durchbruch soll superschnelle Computer ermöglichen

Experten der Technischen Hochschule Chalmers (CTH) http://chalmers.se haben über Schall mit künstlichen Atomen kommuniziert. Bislang war solch eine Interaktion nur über Licht möglich. Die am Projekt beteiligten Forscher, die sich aus theoretischen und experimentellen Physikern zusammensetzen, sprechen von einem "Durchbruch mit Zukunftspotenzial" - von neuen Möglichkeiten in der Quantenphysik bis hin zur Entwicklung superschneller Computer.


Experiment: Schallwellen eines Atoms werden aufgefangen

(Foto: chalmers.se)

"Tür zur Quantenwelt"

"Wir haben eine vollkommen neue Tür zur Quantenwelt aufgestoßen", erklärt Per Delsing, Leiter der Experimentalphysikergruppe des Projekts. "Wir können nun mit Atomen sprechen und ihnen zuhören." Als Kommunikationskanal sei dabei weltweit zum ersten Mal erfolgreich Schall anstelle von Licht eingesetzt worden.

"Da sich Schallwellen wesentlich langsamer fortbewegen als Licht, tun sich nun völlig neue Möglichkeiten für uns auf, um die verschiedenen Quantenphänomene kontrollieren zu können. Unser längerfristiges Ziel ist es, die quantenphysikalischen Kräfte anzuzapfen, um davon zu profitieren - zum Beispiel für die Entwicklung extrem schneller Computer", so Desling.

Winzige Quantenpartikel

Wenn es um die Interaktion zwischen Atomen und Licht geht, hat die Forschung im Bereich der Quantenphysik im Laufe der vergangenen Jahre bereits große Fortschritte gemacht. Sobald dieselbe Interaktion über Schallwellen erfolgen soll, wird die Herausforderung für die Wissenschaft aber sofort ungleich größer.

"Der theoretischen Grundannahme folgend, wird der Schall von Atomen in winzige Quantenpartikel zerlegt. Solch ein Partikel entspricht dem kleinsten physikalisch möglichen Laut, den man überhaupt aufspüren kann", erläutert Martin Gustafsson eine der zentralen Schwierigkeiten im Umgang mit dem neuen Ansatz.

Dieser hat aber auch eindeutige Vorteile. "Da Schall sich deutlich langsamer ausbreitet als Licht, haben wir mehr Zeit zur Verfügung, die Quantenpartikel zu beeinflussen, während sie sich auf ihrer Reise befinden", betont Gustafsson. "Bei Licht, das sich rund 100.000 Mal schneller bewegt als Schall, haben wir diese Möglichkeiten nicht zur Verfügung", so der Forscher.

Extrem hohe Frequenzen

Für ihre Experimente griffen die CTH-Physiker auf eine Frequenz von 4,8 Gigahertz zurück. "Das ist in etwa mit der Mikrowellenfrequenz moderner WLAN-Netze vergleichbar", meint Gustafsson. Auf musikalische Kriterien hin umgemünzt entspricht das in etwa einer Note, die rund 20 Mal höher klingt als der höchste mögliche Ton eines Klavierflügels.

"Bei derart hohen Frequenzen wird die Wellenlänge des Schalls so kurz, dass dieser über die Oberfläche eines Mikrochips geleitet werden kann", schildern die Forscher die Erkenntnisse aus ihren Labortests. Ob und wann sich mithilfe dieser Methode superschnelle Quantenrechner bauen lassen, ist bislang aber noch völlig unklar.

Markus Steiner | pressetext.redaktion

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht In einem Quantenrennen ist jeder Gewinner und Verlierer zugleich
27.03.2017 | Universität Wien

nachricht Proteintransport - Stau in der Zelle
24.03.2017 | Ludwig-Maximilians-Universität München

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Wegweisende Erkenntnisse für die Biomedizin: NAD⁺ hilft bei Reparatur geschädigter Erbinformationen

Eine internationale Forschergruppe mit dem Bayreuther Biochemiker Prof. Dr. Clemens Steegborn präsentiert in 'Science' neue, für die Biomedizin wegweisende Forschungsergebnisse zur Rolle des Moleküls NAD⁺ bei der Korrektur von Schäden am Erbgut.

Die Zellen von Menschen und Tieren können Schäden an der DNA, dem Träger der Erbinformation, bis zu einem gewissen Umfang selbst reparieren. Diese Fähigkeit...

Im Focus: Designer-Proteine falten DNA

Florian Praetorius und Prof. Hendrik Dietz von der Technischen Universität München (TUM) haben eine neue Methode entwickelt, mit deren Hilfe sie definierte Hybrid-Strukturen aus DNA und Proteinen aufbauen können. Die Methode eröffnet Möglichkeiten für die zellbiologische Grundlagenforschung und für die Anwendung in Medizin und Biotechnologie.

Desoxyribonukleinsäure – besser bekannt unter der englischen Abkürzung DNA – ist die Trägerin unserer Erbinformation. Für Prof. Hendrik Dietz und Florian...

Im Focus: Fliegende Intensivstationen: Ultraschallgeräte in Rettungshubschraubern können Leben retten

Etwa 21 Millionen Menschen treffen jährlich in deutschen Notaufnahmen ein. Im Kampf zwischen Leben und Tod zählt für diese Patienten jede Minute. Wenn sie schon kurz nach dem Unfall zielgerichtet behandelt werden können, verbessern sich ihre Überlebenschancen erheblich. Damit Notfallmediziner in solchen Fällen schnell die richtige Diagnose stellen können, kommen in den Rettungshubschraubern der DRF Luftrettung und zunehmend auch in Notarzteinsatzfahrzeugen mobile Ultraschallgeräte zum Einsatz. Experten der Deutschen Gesellschaft für Ultraschall in der Medizin e.V. (DEGUM) schulen die Notärzte und Rettungsassistenten.

Mit mobilen Ultraschallgeräten können Notärzte beispielsweise innere Blutungen direkt am Unfallort identifizieren und sie bei Bedarf auch für Untersuchungen im...

Im Focus: Gigantische Magnetfelder im Universum

Astronomen aus Bonn und Tautenburg in Thüringen beobachteten mit dem 100-m-Radioteleskop Effelsberg Galaxienhaufen, das sind Ansammlungen von Sternsystemen, heißem Gas und geladenen Teilchen. An den Rändern dieser Galaxienhaufen fanden sie außergewöhnlich geordnete Magnetfelder, die sich über viele Millionen Lichtjahre erstrecken. Sie stellen die größten bekannten Magnetfelder im Universum dar.

Die Ergebnisse werden am 22. März in der Fachzeitschrift „Astronomy & Astrophysics“ veröffentlicht.

Galaxienhaufen sind die größten gravitativ gebundenen Strukturen im Universum, mit einer Ausdehnung von etwa zehn Millionen Lichtjahren. Im Vergleich dazu ist...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Rund 500 Fachleute aus Wissenschaft und Wirtschaft diskutierten über technologische Zukunftsthemen

24.03.2017 | Veranstaltungen

Lebenswichtige Lebensmittelchemie

23.03.2017 | Veranstaltungen

Die „Panama Papers“ aus Programmierersicht

22.03.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Clevere Folien voller Quantenpunkte

27.03.2017 | Materialwissenschaften

In einem Quantenrennen ist jeder Gewinner und Verlierer zugleich

27.03.2017 | Physik Astronomie

Klimakiller Kuh: Methan-Ausstoß von Vieh könnte bis 2050 um über 70 Prozent steigen

27.03.2017 | Biowissenschaften Chemie