Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Forscher produziert hochwertiges Graphen

21.04.2011
Es gilt als das elektronische Wundermaterial des 21. Jahrhunderts: Graphen. Bisher ließen sich nur sehr kleine oder qualitativ minderwertige Folien produzieren – zu klein oder untauglich für Hightech-Anwendungen.

Jetzt aber hat Prof. Dr. Michael Horn-von Hoegen vom Center for Nanointegration (CeNIDE) der Universität Duisburg-Essen (UDE) ein Verfahren etabliert, das ein hochwertiges Produkt in einem Schritt entstehen lässt. Seine Forschungsergebnisse publizierte er nun in dem renommierten Fachmagazin „Applied Physics Letters“ (Jahrgang 98, Ausgabe 14).

Seine Dicke verhält sich zu einem Blatt Papier wie eben dieses Blatt zur Höhe der Bosporus-Brücke in Istanbul: Graphen – mit Betonung auf der zweiten Silbe – leitet den elektrischen Strom wie kein zweites Material auf der Welt und ist zudem extrem reißfest. Bis vor Kurzem hatte es jedoch einen nicht zu verachtenden Schönheitsfehler: Die weltweite Forschergemeinde war sich einig, dass es nie stabil existieren würde. Doch im Jahr 2004 gelang es den Russen Andre Geim und Konstantin Novoselov, Graphen herzustellen. Dafür erhielten sie 2010 den Nobelpreis für Physik. Auch an der UDE beschäftigen sich mehrere Projekte mit der Erforschung des Wundermaterials.

Bei Graphen handelt es sich um eine Schicht aus bienenwabenförmig angeordnetem Kohlenstoff, die nur aus einer einzigen Atomlage besteht. Dünner kann ein Material nicht sein. Nun ist es nach wie vor sehr aufwendig, größere Flächen herzustellen. Gelingt dies, lässt die Qualität des Produktes meist zu wünschen übrig. Hier setzt die Forschung der Arbeitsgruppe von Michael Horn-von Hoegen, Professor für Experimentalphysik, an: „Unser Ziel ist es, das Wachstum der Schicht im Detail zu verstehen, um eine Art Kochrezept zu entwickeln, mit dessen Hilfe man Graphen defektfrei, möglichst großflächig und für industrielle Zwecke geeignet herstellen kann“, berichtet Horn-von Hoegen.

Das nun publizierte Verfahren hat er in Zusammenarbeit mit Forschern der Universitäten Köln und Twente entwickelt: Das Gas Ethylen wird katalytisch an der Oberfläche eines Iridiumkristalls zersetzt. Dabei lagert sich eine genau einatomige Kohlenstoffschicht auf dem Iridium ab – fertig. Als weltweit einmalige Besonderheit hat das Team um Horn-von Hoegen zudem die Möglichkeit, mittels hochauflösender Elektronenbeugung (LEED) die Qualität des Produkts selbst und direkt im Anschluss zu prüfen. Die LEED lässt Defekte sofort als sternförmige Struktur erscheinen. „Das sieht zwar hübsch aus, bedeutet aber, dass die einzelnen Kohlenstoffwaben gegeneinander verdreht sind“, erklärt Horn-von Hoegen. „Daher freuen wir uns über Beugungsbilder, die keine Sterne zeigen – langweilig, aber perfekt.“

Graphen wird als einziger echt zweidimensionaler Festkörper überhaupt betrachtet. In ihm bewegen sich Elektronen schneller als in jedem anderen Material. Das bedingt seine extrem hohe elektrische Leitfähigkeit. In der Batterietechnik, die sich besonders im Hinblick auf strombetriebene Autos derzeit rasant weiterentwickelt, gilt eine Membran aus dem neuen Material zwischen den Batteriepolen als vielversprechend. In Prozessoren künftiger Computer könnte es zudem das Silizium ersetzen und die Technologie um ein Vielfaches beschleunigen: Mehr Prozesse in kürzerer Zeit durch deutlich höhere Taktfrequenzen wären möglich. Da dies nur mit extrem hochwertigem Graphen funktioniert, hat die Arbeit des UDE-Professors hier besondere Bedeutung.

Weitere Informationen: Prof. Dr. Michael Horn-von-Hoegen, Tel. 0203/379-1438,-1439, horn-von-hoegen@uni-due.deRedaktion: Birte Vierjahn, CeNIDE, Tel. 0203/379-1456, birte.vierjahn@uni-due.de

Ulrike Bohnsack | idw
Weitere Informationen:
http://www.uni-due.de

Weitere Berichte zu: CeNIDE Graphen-Speicher LEED Schicht UDE Wundermaterial

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht 3D-Graphen: Experiment an BESSY II zeigt, dass optische Eigenschaften einstellbar sind
24.05.2017 | Helmholtz-Zentrum Berlin für Materialien und Energie GmbH

nachricht Hochspannung für den Teilchenbeschleuniger der Zukunft
24.05.2017 | Eidgenössische Technische Hochschule Zürich (ETH Zürich)

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Orientierungslauf im Mikrokosmos

Physiker der Universität Würzburg können auf Knopfdruck einzelne Lichtteilchen erzeugen, die einander ähneln wie ein Ei dem anderen. Zwei neue Studien zeigen nun, welches Potenzial diese Methode hat.

Der Quantencomputer beflügelt seit Jahrzehnten die Phantasie der Wissenschaftler: Er beruht auf grundlegend anderen Phänomenen als ein herkömmlicher Rechner....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Tumult im trägen Elektronen-Dasein

Ein internationales Team von Physikern hat erstmals das Streuverhalten von Elektronen in einem nichtleitenden Material direkt beobachtet. Ihre Erkenntnisse könnten der Strahlungsmedizin zu Gute kommen.

Elektronen in nichtleitenden Materialien könnte man Trägheit nachsagen. In der Regel bleiben sie an ihren Plätzen, tief im Inneren eines solchen Atomverbunds....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Hauchdünne magnetische Materialien für zukünftige Quantentechnologien entwickelt

Zweidimensionale magnetische Strukturen gelten als vielversprechendes Material für neuartige Datenspeicher, da sich die magnetischen Eigenschaften einzelner Molekülen untersuchen und verändern lassen. Forscher haben nun erstmals einen hauchdünnen Ferrimagneten hergestellt, bei dem sich Moleküle mit verschiedenen magnetischen Zentren auf einer Goldfläche selbst zu einem Schachbrettmuster anordnen. Dies berichten Wissenschaftler des Swiss Nanoscience Institutes der Universität Basel und des Paul Scherrer Institutes in der Wissenschaftszeitschrift «Nature Communications».

Ferrimagneten besitzen zwei magnetische Zentren, deren Magnetismus verschieden stark ist und in entgegengesetzte Richtungen zeigt. Zweidimensionale, quasi...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Meeresschutz im Fokus: Das IASS auf der UN-Ozean-Konferenz in New York vom 5.-9. Juni

24.05.2017 | Veranstaltungen

Diabetes Kongress in Hamburg beginnt heute: Rund 6000 Teilnehmer werden erwartet

24.05.2017 | Veranstaltungen

Wissensbuffet: „All you can eat – and learn”

24.05.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Hochspannung für den Teilchenbeschleuniger der Zukunft

24.05.2017 | Physik Astronomie

3D-Graphen: Experiment an BESSY II zeigt, dass optische Eigenschaften einstellbar sind

24.05.2017 | Physik Astronomie

Optisches Messverfahren für Zellanalysen in Echtzeit - Ulmer Physiker auf der Messe "Sensor+Test"

24.05.2017 | Messenachrichten