Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Forscher lassen molekulare Fußbälle explodieren - Meilenstein bei Untersuchung komplexer Moleküleül

27.06.2014

Mit intensiven Röntgenlaserblitzen hat ein internationales Forscherteam die Explosion winziger Fußballmoleküle analysiert. Diese sogenannten Buckminsterfullerene, auch kurz als Buckyballs bezeichnet, bestehen aus 60 in Fußballform angeordneten Kohlenstoffatomen.

Das Experiment, in dem die Buckyballs in weniger als 100 Femtosekunden (billiardstel Sekunden) auseinanderbrachen, belegt, dass die Explosion der Fullerene in einer vorhersagbaren Art und Weise abläuft, wie das Team um Prof. Nora Berrah von der Universität von Connecticut und DESY-Forscher Prof. Robin Santra vom Center for Free-Electron Laser Science CFEL im Fachjournal „Nature Communications“ beschreiben.


Künstlerische Darstellung eines Buckyballs im Röntgenlaserblitz.

Illustration: Greg Stewart/SLAC

Das ist ein wichtiger Meilenstein für die Untersuchung individueller, komplexer Biomoleküle mit sogenannten Freie-Elektronen-Röntgenlasern. Biomoleküle brechen bei solchen Untersuchungen ebenfalls auseinander.

„Uns hat sehr beeindruckt, dass sich ein derart kurzer und dynamischer Prozess so überraschend detailliert mit Hilfe klassischer Methoden beschreiben lässt, wenn man einen Schuss Quantenmechanik hinzufügt“, sagt Santra, der auch Professor an der Universität Hamburg und Mitglied des Hamburger Centre for Ultrafast Imaging CUI ist. „Wenn man die Struktur individueller Biomoleküle untersucht, ist es sehr wichtig, diesen Prozess simulieren zu können, damit man eine Vorstellung davon bekommt, was im Experiment vor sich geht“, betont Berrah.

Freie-Elektronen-Röntgenlaser (XFEL) sind neuartige Anlagen, die ultrakurze und superhelle Röntgenblitze mit Hilfe energiereicher Elektronen aus einem starken Teilchenbeschleuniger erzeugen. Forscher können diese Blitze nutzen, um die Struktur komplexer Verbindungen in der Welt der Moleküle und Atome zu erkunden. Die Struktur beispielsweise eines Biomoleküls verrät etwas über seine Funktion und ermöglicht unter anderem die Entwicklung neuer, maßgeschneiderter Medikamente.

Normalerweise nutzen Forscher für solche Untersuchungen mit XFELs winzige Nanokristalle aus Proteinen. Das hat verschiedene Vorteile, unter anderem produzieren Kristalle im Röntgenlicht ein stärkeres Signal als individuelle Moleküle. Zahlreiche Biomoleküle lassen sich jedoch nur sehr widerwillig in Kristallform zwingen und kommen in der Natur überhaupt nicht als Kristall vor. Daher möchten Forscher die Möglichkeit haben, auch individuelle, nicht kristallisierte Biomoleküle zu untersuchen.

Die Struktur eines Moleküls lässt sich aus der charakteristischen Art und Weise berechnen, wie seine Elektronen das Röntgenlicht streuen. Allerdings absorbieren die Elektronen durch den photoelektrischen Effekt eine große Menge an Röntgenenergie und ändern dadurch umgehend ihre Konfiguration. Das führt wiederum zu einer veränderten Streuung des verbleibenden Röntgenlichts. Dieses Problem lässt sich nicht durch kürzere Belichtungszeiten umgehen, da bei jedem Röntgenblitz die Absorptionsrate stets höher ist als die Streurate.

Um diesen Prozess zu beobachten, nutzten die Forscher den derzeit weltweit stärksten Röntgenlaser LCLS (Linac Coherent Light Source) am US-Forschungszentrum SLAC und beschossen mit ihm die Buckyballs als gut bekanntes, moderat komplexes Testsystem. Die C60-Moleküle haben die regelmäßige Form eines Fußballs, sind jedoch weniger als ein Nanometer (millionstel Millimeter) groß. „Die hellen Röntgenblitze schlagen eine große Zahl von Elektronen aus den Molekülen, so dass seine Atome stärker und stärker positiv geladen werden und die elektrische Abstoßung das Molekül schließlich explodieren lässt“, beschreibt Berrah.

Die Wissenschaftler zeichneten die Explosionstrümmer auf und verglichen dies mit einer von DESY-Wissenschaftler Dr. Zoltan Jurek entwickelten Simulation. „Solche Simulationswerkzeuge wurden ursprünglich für Dinge wie Flüssigkeiten oder Polymere entwickelt, die sich im oder nahe am Gleichgewicht befinden, nicht für die hohen Energien und starken Kräfte, die wir hier haben“, erläutert Jurek. „Man hat vor etwa zehn Jahren damit begonnen, XFEL-induzierte Prozesse zu simulieren, aber niemand wusste, ob das wirklich funktionieren würde.“ Die Experimente an der LCLS liefern den ersten systematischen Test dieser Simulationen.

Um die Prozesse innerhalb der Atome mit einzubeziehen, ergänzten die Wissenschaftler ihre Simulation um etwas Quantenmechanik. Die Ergebnisse geben die Beobachtungen sehr gut wieder. „Wir waren überrascht, dass unsere Simulation sogar quantitativ korrekte Vorhersagen liefert“, sagt Santra. Die Simulation eröffnet damit einen Weg, die Veränderung der Elektronen-Konfiguration bei der Untersuchung komplexer Biomoleküle zu berücksichtigen. „Das hat sehr weitreichende Implikationen für die Untersuchung von Biomolekülen, da man in Einzelschuss-Experimenten immer die Elektronen-Konfiguration verändert. Unsere Technik kann dabei helfen, die Streubilder zu interpretieren und auf diese Weise die Qualität von Strukturuntersuchungen zu erhöhen.“

Zu dem Team gehören außer Forschern von DESY, der Universität von Connecticut und SLAC Wissenschaftler der Western Michigan University, der Universität Uppsala, der Universität Oxford, des Instituto di Metodologie Inorganiche e dei Plasmi in Rom, des Imperial College London, der Universität Turku, der University of Texas, des Synchrotrons SOLEIL in Frankreich und der Tohoku-Universität in Japan.

Das Deutsche Elektronen-Synchrotron DESY ist das führende deutsche Beschleunigerzentrum und eines der führenden weltweit. DESY ist Mitglied der Helmholtz-Gemeinschaft und wird zu 90 Prozent vom BMBF und zu 10 Prozent von den Ländern Hamburg und Brandenburg finanziert. An seinen Standorten in Hamburg und Zeuthen bei Berlin entwickelt, baut und betreibt DESY große Teilchenbeschleuniger und erforscht damit die Struktur der Materie. Die Kombination von Forschung mit Photonen und Teilchenphysik bei DESY ist einmalig in Europa. Das Center for Free-Electron Laser Science CFEL ist eine Kooperation von DESY, Universität Hamburg und der Max-Planck-Gesellschaft.

Weitere Informationen:

http://www.desy.de/infos__services/presse/pressemeldungen/2014/pm_270614/index_g...

Dr. Thomas Zoufal | idw - Informationsdienst Wissenschaft

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Raumschrott im Fokus
22.05.2018 | Universität Bern

nachricht Countdown für Kilogramm, Kelvin und Co.
18.05.2018 | Physikalisch-Technische Bundesanstalt (PTB)

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Bose-Einstein-Kondensat im Riesenatom - Universität Stuttgart untersucht exotisches Quantenobjekt

Passt eine ultrakalte Wolke aus zehntausenden Rubidium-Atomen in ein einzelnes Riesenatom? Forscherinnen und Forschern am 5. Physikalischen Institut der Universität Stuttgart ist dies erstmals gelungen. Sie zeigten einen ganz neuen Ansatz, die Wechselwirkung von geladenen Kernen mit neutralen Atomen bei weitaus niedrigeren Temperaturen zu untersuchen, als es bisher möglich war. Dies könnte einen wichtigen Schritt darstellen, um in Zukunft quantenmechanische Effekte in der Atom-Ion Wechselwirkung zu studieren. Das renommierte Fachjournal Physical Review Letters und das populärwissenschaftliche Begleitjournal Physics berichteten darüber.*)

In dem Experiment regten die Forscherinnen und Forscher ein Elektron eines einzelnen Atoms in einem Bose-Einstein-Kondensat mit Laserstrahlen in einen riesigen...

Im Focus: Algorithmen für die Leberchirurgie – weltweit sicherer operieren

Die Leber durchlaufen vier komplex verwobene Gefäßsysteme. Die chirurgische Entfernung von Tumoren ist daher oft eine schwierige Aufgabe. Das Fraunhofer-Institut für Bildgestützte Medizin MEVIS hat Algorithmen entwickelt, die die Bilddaten von Patienten analysieren und chirurgische Risiken berechnen. Leberkrebsoperationen werden damit besser planbar und sicherer.

Jährlich erkranken weltweit 750.000 Menschen neu an Leberkrebs, viele weitere entwickeln Lebermetastasen aufgrund anderer Krebserkrankungen. Ein chirurgischer...

Im Focus: Positronen leuchten besser

Leuchtstoffe werden schon lange benutzt, im Alltag zum Beispiel im Bildschirm von Fernsehgeräten oder in PC-Monitoren, in der Wissenschaft zum Untersuchen von Plasmen, Teilchen- oder Antiteilchenstrahlen. Gleich ob Teilchen oder Antiteilchen – treffen sie auf einen Leuchtstoff auf, regen sie ihn zum Lumineszieren an. Unbekannt war jedoch bisher, dass die Lichtausbeute mit Elektronen wesentlich niedriger ist als mit Positronen, ihren Antiteilchen. Dies hat Dr. Eve Stenson im Max-Planck-Institut für Plasmaphysik (IPP) in Garching und Greifswald jetzt beim Vorbereiten von Experimenten mit Materie-Antimaterie-Plasmen entdeckt.

„Wäre Antimaterie nicht so schwierig herzustellen, könnte man auf eine Ära hochleuchtender Niederspannungs-Displays hoffen, in der die Leuchtschirme nicht von...

Im Focus: Erklärung für rätselhafte Quantenoszillationen gefunden

Sogenannte Quanten-Vielteilchen-„Scars“ lassen Quantensysteme länger außerhalb des Gleichgewichtszustandes verweilen. Studie wurde in Nature Physics veröffentlicht

Forschern der Harvard Universität und des MIT war es vor kurzem gelungen, eine Rekordzahl von 53 Atomen einzufangen und ihren Quantenzustand einzeln zu...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

48V im Fokus!

21.05.2018 | Veranstaltungen

„Data Science“ – Theorie und Anwendung: Internationale Tagung unter Leitung der Uni Paderborn

18.05.2018 | Veranstaltungen

Visual-Computing an Bord der MS Wissenschaft

17.05.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

48V im Fokus!

21.05.2018 | Veranstaltungsnachrichten

Bose-Einstein-Kondensat im Riesenatom - Universität Stuttgart untersucht exotisches Quantenobjekt

18.05.2018 | Physik Astronomie

Countdown für Kilogramm, Kelvin und Co.

18.05.2018 | Physik Astronomie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics