Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Forscher kontrollieren Spin-Fluktuationen in Echtzeit

26.08.2013
Physiker der Universität Basel haben eine neue Methode entwickelt, mit der sich der Spin von Atomkernen auch in extrem kleinen Materialproben ausrichten lässt.

Damit lässt sich die Empfindlichkeit von Magnetresonanztomographie im Nanometerbereich steigern, was 3D-Aufnahmen von kleinsten Objekten erlaubt, die bisher nicht möglich waren. Dies berichten die Forscher zusammen mit niederländischen Kollegen in der Fachzeitschrift «Nature Physics».

Viele der Elemente wie Wasserstoff oder Phosphor, aus denen die Materie um uns herum besteht, enthalten einen magnetischen Kern in der Mitte eines jeden Atoms. Dieser Kern verhält sich wie ein winziger Magnet mit einem Nord- und einem Südpol. Durch Anlegen eines grossen Magnetfelds richten sich die Pole dieser Kerne entlang des Magnetfeldes aus, wodurch eine geordnete Ausrichtung, eine sogenannte Kernspinpolarisation, entsteht.

Wenn die Kerne mit Radiowellen in einer bestimmten Frequenz bestrahlt werden, ändern sie ihre Richtung vom Magnetfeld weg. Weil sie magnetisch sind, beginnen sie sich aber wieder zurückzudrehen und geben die Energie frei, die sie zuvor durch die Radiowellen aufgenommen hatten. Mit einer speziellen Antenne können diese Signale erfasst werden.

Dieses Verfahren wird als magnetische Kernresonanz bezeichnet und liefert wertvolle Informationen zur Struktur oder zur chemischen Zusammensetzung eines Prüfobjekts. Das Verfahren bildet auch die Grundlage für die Magnetresonanztomographie (MRI), welche 3D-Bilder der Dichte eines Objekts erstellen kann und in der medizinischen Diagnostik oft eingesetzt wird.

Natürliche Schwankungen bei sehr kleinen Objekten
Bei sehr kleinen Objekten, die kleiner als eine einzelne Zelle sind und daher nur eine geringe Anzahl von Kernen aufweisen, sind jedoch die natürlichen Schwankungen der Kernspinpolarisation grösser als die Polarisation, die durch das magnetische Feld erzeugt wird. Diese Abweichungen, sogenanntes «Spin Noise», ist in extrem kleinen Massstäben so dominant, dass es sehr schwierig ist, die Kernspinresonanz zu messen und mit MRI zu untersuchen.

Zusammen mit Wissenschaftlern der Technischen Universitäten in Eindhoven und Delft hat nun ein Team um Prof. Martino Poggio von der Universität Basel eine Methode entwickelt, mit der sich eine Polarisierung dieser zufälligen Schwankungen erzeugen lässt. Durch die Überwachung, Steuerung und Erfassung statistischer Spinfluktuationen konnten die Forscher Polarisationen erzeugen, die viel grösser sind als die, welche durch das Anlegen eines Magnetfeldes hervorgerufen werden. Die Forscher sind die ersten, die solche Schwankungen in Echtzeit manipulieren, kontrollieren und erfassen können.

Die Ergebnisse sind von unmittelbarer Bedeutung für jüngste technische Entwicklungen, durch welche die Volumen, die sich mittels Kernspinresonanz -Messungen untersuchen lassen, stark reduziert werden konnten. «Ein besseres Verständnis dieser Phänomene kann zu neuen, hochauflösenden bildgebenden Verfahren im Nano- und atomaren Bereich führen», erklärt Poggio, Argovia-Professor für Nanotechnologie am Swiss Nanoscience Institute. Das in Basel entwickelte Verfahren könnte einen möglichen Weg zur Verbesserung der Empfindlichkeit der Magnetresonanz-Bildgebung im Nanometerbereich darstellen oder gegebenenfalls auch für die Entwicklung von Festkörper-Quantencomputern nützlich werden.

Perspektive auf den Quantencomputer
Durch die Fähigkeit, die natürlichen Schwankungen in der Kernspinpolarisation zu reduzieren, könnte sich die Methode auch eignen, um die Kohärenzzeit von Festkörper-Qubits zu verbessern. Qubits sind Einheiten der Quanteninformation, welche in Quantencomputern zur Anwendung kommen sollen. Festkörper-Qubits sind sehr anfällig: Selbst winzige Schwankungen in der Kernpolarisation zerstören die quantenmechanische Kohärenz. Wenn es gelingt, diese Schwankungen zu kontrollieren, lässt sich die Kohärenzzeit verlängern. Die Kontrolle der fragilen Quantenzustände bildet eine wichtige Voraussetzung für die Realisierung eines Quantencomputers.

Die Studie wurde durch den Kanton Aargau, den Schweizerischen Nationalfonds, das Swiss Nanoscience Institute (SNI) und den Nationalen Forschungsschwerpunkt Quantum Science and Technology (QSIT) unterstützt.

Originalbeitrag
P. Peddibhotla, F. Xue, H. I. T. Hauge, S. Assali, E. P. A. M. Bakkers, M. Poggio
Harnessing nuclear spin polarization fluctuations in a semiconductor nanowire
Nature Physics (2013) | doi: 10.1038/nphys2731
Weitere Auskünfte
Prof. Martino Poggio, Universität Basel, Departement Physik, Tel. +41 61 267 37 61, E-Mail: martino.poggio@unibas.ch

Christoph Dieffenbacher | Universität Basel
Weitere Informationen:
http://www.unibas.ch
http://www.nature.com/nphys/journal/vaop/ncurrent/full/nphys2731.html -

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Eine Extra-Sekunde zum neuen Jahr
08.12.2016 | Physikalisch-Technische Bundesanstalt (PTB)

nachricht Heimcomputer entdecken rekordverdächtiges Pulsar-Neutronenstern-System
08.12.2016 | Max-Planck-Institut für Radioastronomie

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Rätsel um Mott-Isolatoren gelöst

Universelles Verhalten am Mott-Metall-Isolator-Übergang aufgedeckt

Die Ursache für den 1937 von Sir Nevill Francis Mott vorhergesagten Metall-Isolator-Übergang basiert auf der gegenseitigen Abstoßung der gleichnamig geladenen...

Im Focus: Poröse kristalline Materialien: TU Graz-Forscher zeigt Methode zum gezielten Wachstum

Mikroporöse Kristalle (MOFs) bergen große Potentiale für die funktionalen Materialien der Zukunft. Paolo Falcaro von der TU Graz et al zeigen in Nature Materials, wie man MOFs gezielt im großen Maßstab wachsen lässt.

„Metal-organic frameworks“ (MOFs) genannte poröse Kristalle bestehen aus metallischen Knotenpunkten mit organischen Molekülen als Verbindungselemente. Dank...

Im Focus: Gravitationswellen als Sensor für Dunkle Materie

Die mit der Entdeckung von Gravitationswellen entstandene neue Disziplin der Gravitationswellen-Astronomie bekommt eine weitere Aufgabe: die Suche nach Dunkler Materie. Diese könnte aus einem Bose-Einstein-Kondensat sehr leichter Teilchen bestehen. Wie Rechnungen zeigen, würden Gravitationswellen gebremst, wenn sie durch derartige Dunkle Materie laufen. Dies führt zu einer Verspätung von Gravitationswellen relativ zu Licht, die bereits mit den heutigen Detektoren messbar sein sollte.

Im Universum muss es gut fünfmal mehr unsichtbare als sichtbare Materie geben. Woraus diese Dunkle Materie besteht, ist immer noch unbekannt. Die...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Wie sich Zellen gegen Salmonellen verteidigen

Bioinformatiker der Goethe-Universität haben das erste mathematische Modell für einen zentralen Verteidigungsmechanismus der Zelle gegen das Bakterium Salmonella entwickelt. Sie können ihren experimentell arbeitenden Kollegen damit wertvolle Anregungen zur Aufklärung der beteiligten Signalwege geben.

Jedes Jahr sind Salmonellen weltweit für Millionen von Infektionen und tausende Todesfälle verantwortlich. Die Körperzellen können sich aber gegen die...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Firmen- und Forschungsnetzwerk Munitect tagt am IOW

08.12.2016 | Veranstaltungen

NRW Nano-Konferenz in Münster

07.12.2016 | Veranstaltungen

Wie aus reinen Daten ein verständliches Bild entsteht

05.12.2016 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Einzelne Proteine bei der Arbeit beobachten

08.12.2016 | Biowissenschaften Chemie

Intelligente Filter für innovative Leichtbaukonstruktionen

08.12.2016 | Messenachrichten

Seminar: Ströme und Spannungen bedarfsgerecht schalten!

08.12.2016 | Seminare Workshops