Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Forscher filmen Magnetspeicher in Superzeitlupe -- DESYs PETRA III zeigt magnetische Mikrowirbel

25.11.2014

Forscher haben mit einer Superzeitlupe bei DESY einen magnetischen Datenspeicherkandidaten der Zukunft bei der Arbeit gefilmt. Der Film aus dem Röntgenmikroskop zeigt, wie sich magnetische Wirbel in ultraschnellen Speicherzellen ausbilden. Die Arbeit ermöglicht ein besseres Verständnis der Dynamik magnetischer Speichermaterialien, wie die Wissenschaftler um Dr. Philipp Wessels von der Universität Hamburg im Fachjournal "Physical Review B" berichten. Magnetspeicher sind in jeder Computer-Festplatte enthalten.

„Zum ersten Mal lässt sich mit unseren Aufnahmen in Echtzeit verfolgen, wie die Magnetisierung genau abläuft“, betont Wessels aus der Gruppe von Prof. Markus Drescher am Hamburg Center for Ultrafast Imaging (CUI). „Damit lässt sich das Schalten dieser Magnetzellen erstmals im Detail beobachten.“


Darstellung der Magnetfeldrichtung in der Speicherzelle.

Bild: Philipp Wessels/Universität Hamburg


Röntgenmikroskop-Aufnahme der Speicherzelle.

Bild: Philipp Wessels/Universität Hamburg

Die Forscher haben für ihre Untersuchung eine Speicherzelle bestehend aus einer Mischung (Legierung) aus Nickel und Eisen gewählt, die sich in weniger als einer milliardstel Sekunde magnetisieren lässt.
Mit einem eigens konstruierten Röntgenmikroskop, das zusammen mit der Gruppe von Prof. Thomas Wilhein von der Hochschule Koblenz entwickelt wurde, konnten die Wissenschaftler verfolgen, wie eine Speicherzelle gelöscht und neu beschrieben wird.

Die extrem kurzen Röntgenblitze von DESYs Forschungslichtquelle PETRA III ermöglichten dabei eine Zeitauflösung von 0,2 milliardstel Sekunden (200 Pikosekunden). Die Magnetisierung lässt sich daran ablesen, wie stark einzelne Bereiche der Probe das polarisierte Röntgenlicht schlucken. Das Röntgenmikroskop kann dabei noch 60 millionstel Millimeter (60 Nanometer) kleine Details erkennen.

Für ihre Untersuchungen nutzten die Wissenschaftler winzige, quadratische Nickel-Eisen-Speicherzellen mit einer Kantenlänge von zwei tausendstel Millimetern (2 Mikrometer). Diese Speicherzellen formen in ihrem Inneren vier magnetische Bereiche aus, sogenannte Domänen, zwischen denen sich die Magnetisierung entweder mit oder gegen den Uhrzeigersinn ändert. Diese magnetischen Domänen sind dreieckig, und ihre Spitzen treffen sich in der Mitte der Speicherzelle. Auf diese Weise entsteht im Zentrum der Zelle ein magnetischer Wirbelkern.

Wird eine Speicherzelle durch ein äußeres Magnetfeld gelöscht, wandert der Magnetwirbelkern aus ihr heraus. „In unseren Untersuchungen ließ sich erstmals messen, mit welcher Geschwindigkeit die Wirbelkerne aus dem Material herausgedrückt werden“, erläutert Ko-Autor Dr. Jens Viefhaus, verantwortlich für das Strahlrohr P04, an dem die Versuche stattfanden. Ein solcher Kern schießt demnach mit über 3600 Kilometern pro Stunde aus der Speicherzelle hinaus. „Dieser Vorgang lässt sich sehr gut reproduzieren, so dass wir die Geschwindigkeit zuverlässig bestimmen konnten“, erläutert CUI-Forscher Privatdozent Dr. Guido Meier. „Möglich wurde diese Messung nur, weil wir sehr starke und stabile magnetische Anregungspuls verwenden konnten.“

Das äußere Magnetfeld erzwingt in der gesamten Speicherzelle eine einheitliche Magnetisierung. Wird es abgeschaltet, bildet die Zelle erneut die vier magnetischen Domänen und einen zentralen Wirbel aus - je nach Richtung des äußeren Magnetfelds ist sie damit neu beschrieben worden. Dieser Vorgang ist jedoch komplex. „Der Vier-Domänen-Zustand entwickelt sich über ein kompliziertes Zickzackmuster, und die Entstehung dieses Zustandes konnten wir erstmals ‚live‘ beobachten“, berichtet Wessels. Dieses Verhalten deckt sich mit Ergebnissen aus Simulationsrechnungen. Die Superzeitlupe erlaubt nun genauere Einblicke in diese schnelle Dynamik.

„Mit derselben Methode lässt sich die Dynamik beliebiger anderer Magnetmaterialien untersuchen“, betont Wessels. „Unsere Experimenten können beitragen zu verstehen, wie schnell man Daten prinzipiell auf magnetische Speichermaterialien kodiert in Domänenform schreiben kann.“

Diese Untersuchungen haben durchaus praktische Relevanz für die Speichertechnologie. „Zwar kommen heute in Laptops und anderen mobilen Geräten immer häufiger nichtmagnetische Speichermaterialien wie beispielsweise Flash-Speicher zum Einsatz, aber wenn es um große Datenmengen geht, sind magnetische Datenspeicher konkurrenzlos günstig“, betont Wessels. „Der Trend geht zum Speichern in der Cloud, und die Cloud ist magnetisch.“Ein besseres Verständnis der Magnetdynamik kann dabei zu schnelleren und leistungsfähigeren Speichermaterialien führen.

An der Arbeit waren die Universität Hamburg, die Hochschule Koblenz, das Max-Planck-Institut für Struktur und Dynamik der Materie sowie DESY beteiligt. Das mobile Röntgenmikroskop wurde von der Universität Hamburg und der Hochschule Koblenz entwickelt und vom Bundesforschungsministerium aus Mitteln für die Verbundforschung gefördert. Am Exzellenzcluster CUI sind die Universität Hamburg, DESY, das Max-Planck-Institut für Struktur und Dynamik der Materie, der europäische Röntgenlaser European XFEL und das Europäische Laboratorium für Molekularbiologie (EMBL) beteiligt.


Weitere Informationen:

http://www.desy.de/infos__services/presse/pressemeldungen/2014/pm_251114/index_ger.html Meldung mit Bildern und Videos
http://dx.doi.org/10.1103/PhysRevB.90.184417  Originalveröffentlichung

Dr. Thomas Zoufal | idw - Informationsdienst Wissenschaft

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Speicherdauer von Qubits für Quantencomputer weiter verbessert
09.12.2016 | Forschungszentrum Jülich

nachricht Elektronenautobahn im Kristall
09.12.2016 | Julius-Maximilians-Universität Würzburg

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Elektronenautobahn im Kristall

Physiker der Universität Würzburg haben an einer bestimmten Form topologischer Isolatoren eine überraschende Entdeckung gemacht. Die Erklärung für den Effekt findet sich in der Struktur der verwendeten Materialien. Ihre Arbeit haben die Forscher jetzt in Science veröffentlicht.

Sie sind das derzeit „heißeste Eisen“ der Physik, wie die Neue Zürcher Zeitung schreibt: topologische Isolatoren. Ihre Bedeutung wurde erst vor wenigen Wochen...

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Rätsel um Mott-Isolatoren gelöst

Universelles Verhalten am Mott-Metall-Isolator-Übergang aufgedeckt

Die Ursache für den 1937 von Sir Nevill Francis Mott vorhergesagten Metall-Isolator-Übergang basiert auf der gegenseitigen Abstoßung der gleichnamig geladenen...

Im Focus: Poröse kristalline Materialien: TU Graz-Forscher zeigt Methode zum gezielten Wachstum

Mikroporöse Kristalle (MOFs) bergen große Potentiale für die funktionalen Materialien der Zukunft. Paolo Falcaro von der TU Graz et al zeigen in Nature Materials, wie man MOFs gezielt im großen Maßstab wachsen lässt.

„Metal-organic frameworks“ (MOFs) genannte poröse Kristalle bestehen aus metallischen Knotenpunkten mit organischen Molekülen als Verbindungselemente. Dank...

Im Focus: Gravitationswellen als Sensor für Dunkle Materie

Die mit der Entdeckung von Gravitationswellen entstandene neue Disziplin der Gravitationswellen-Astronomie bekommt eine weitere Aufgabe: die Suche nach Dunkler Materie. Diese könnte aus einem Bose-Einstein-Kondensat sehr leichter Teilchen bestehen. Wie Rechnungen zeigen, würden Gravitationswellen gebremst, wenn sie durch derartige Dunkle Materie laufen. Dies führt zu einer Verspätung von Gravitationswellen relativ zu Licht, die bereits mit den heutigen Detektoren messbar sein sollte.

Im Universum muss es gut fünfmal mehr unsichtbare als sichtbare Materie geben. Woraus diese Dunkle Materie besteht, ist immer noch unbekannt. Die...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Firmen- und Forschungsnetzwerk Munitect tagt am IOW

08.12.2016 | Veranstaltungen

NRW Nano-Konferenz in Münster

07.12.2016 | Veranstaltungen

Wie aus reinen Daten ein verständliches Bild entsteht

05.12.2016 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Hochgenaue Versuchsstände für dynamisch belastete Komponenten – Workshop zeigt Potenzial auf

09.12.2016 | Seminare Workshops

Ein Nano-Kreisverkehr für Licht

09.12.2016 | Physik Astronomie

Pflanzlicher Wirkstoff lässt Wimpern wachsen

09.12.2016 | Biowissenschaften Chemie