Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Forscher entwickeln Teilchenbeschleuniger für Quasiteilchen

12.05.2016

Kollisionsexperimente in Halbleitern erfolgreich

Unser Standardmodell der Elementarteilchen basiert auf Erkenntnissen, die mit Hilfe von Teilchenbeschleunigern und Kollisionsexperimenten gesammelt wurden. Ein Forscherteam der Universitäten in Regensburg, Marburg und Santa Barbara (USA) hat nun einen neuen Beschleuniger für Teilchen in Festkörpern entwickelt. Das revolutionäre Verfahren wird in der neuen Ausgabe der Fachzeitschrift „Nature“ vorgestellt (DOI: 10.1038/nature17958).


Ein Elektron (blau) und ein Loch (rot) prallen in einem Wolframdiselenid-Kristall (Gitter) zusammen. Die dabei freiwerdende Energie entlädt sich in hochenergetischen Photonen (bunter Lichtstrahl).

Bildnachweis: Fabian Langer - Zur ausschließlichen Verwendung im Rahmen der Berichterstattung zu dieser Pressemitteilung.

Schon kleine Kinder werfen unterschiedliche Dinge auf- und gegeneinander, um so etwas über die Eigenschaften der Gegenstände zu lernen. Teilchenbeschleuniger nutzen diese Herangehensweise zur kontrollierten Untersuchung der kleinsten Bausteine der uns umgebenden Materie. So beschoss der neuseeländische Physiker Ernest Rutherford bereits Anfang des 20. Jahrhunderts Goldfolien mit Alpha-Teilchen.

Aufgrund der Streueigenschaften der Alpha-Strahlung schloss er auf die Struktur des Streuzentrums und fand heraus, dass sich die Masse eines Atoms auf einen kleinen Raum – den Atomkern – konzentriert. Etwa 100 Jahre später kollidieren im Rahmen des bislang größten Experiments der modernen Wissenschaft am Kernforschungszentrum CERN hochenergetische Protonen miteinander, was schließlich zur Entdeckung des sagenumwobenen Higgs-Teilchens geführt hat.

Aufgrund der enormen Teilchenanzahl waren bislang allerdings Verfahren und Methoden zur Nutzung solcher Kollisionsexperimente für die Festkörperphysik unbekannt, obwohl unsere modernen Technologien wesentlich davon abhängen, die strukturellen und elektronischen Eigenschaften von Festkörpern zu verstehen. Gleichwohl kann in einem Festkörper die komplexe Wechselwirkung von Billionen über Billionen von Teilchen auf einzelne Objekte reduziert werden, sogenannte Quasiteilchen.

Einem Team von Physikern um Prof. Dr. Rupert Huber (Universität Regensburg) und Prof. Dr. Mackillo Kira (Philipps-Universität Marburg) ist es nun in Kooperation mit Kollegen aus dem kalifornischen Santa Barbara gelungen, solche Quasiteilchen gezielt miteinander zu kollidieren. Dazu mussten die Forscher extrem schnell vorgehen, denn die Quasiteilchen existieren nur für einen winzigen Augenblick, etwa 10 Femtosekunden lang (1 Femtosekunde = 10 15 s), ehe sie durch Stöße mit umliegenden Elektronen unkontrolliert gestört werden und zerfallen.

Dieses Problem umgingen die Forscher mit Hilfe der Terahertz-Hochfeldquelle an der Universität Regensburg. Zunächst erzeugten die Forscher Paare von Quasiteilchen, sogenannte Elektron-Lochpaare, im Halbleiter Wolframdiselenid mit Hilfe eines superkurzen Lichtblitzes. Die gegensätzlich geladenen Quasiteilchen ziehen einander elektrostatisch an und bilden einen atomähnlichen Komplex, den man als Exziton bezeichnet.

Das starke, schwingende Lichtfeld aus der Terahertz-Hochfeldquelle trennt die beiden Quasiteilchen zunächst voneinander, um sie anschließend mit hoher Geschwindigkeit wieder miteinander zu kollidieren. Der gesamte Beschleunigungsprozess läuft dabei schneller als eine einzige Lichtschwingung ab. Die Kollisionen führen zu ultrakurzen Lichtblitzen, die wiederum – ähnlich wie in Großforschungsanlagen wie dem CERN – Rückschlüsse auf die Struktur der Quasiteilchen zulassen. Diese Beobachtungen wurden durch quantenmechanische Simulationen der Arbeitsgruppe an der Philipps-Universität Marburg unterstützt.

Die Experimente und Berechnungen der Forscher aus Regensburg, Marburg und Santa Barbara belegen, dass grundlegende Beschleunigerkonzepte aus der Teilchenphysik ebenso für Verfahren in der Festkörperphysik genutzt werden können. Die Experimente bieten neuartige Einblicke in die Eigenschaften von Quasiteilchen und könnten wesentlich zur Lösung einiger der größten Rätsel der modernen Physik wie etwa den Mechanismus der Hochtemperatursupraleitung beitragen.

Titel der Original-Publikation:
F. Langer, M. Hohenleutner, C. P. Schmid, C. Poellmann, P. Nagler, T. Korn, C. Schüller, M. S. Sherwin, U. Huttner, J. T. Steiner, S. W. Koch, M. Kira, and R. Huber, Lightwave-driven quasiparticle collisions on a subcycle timescale, Nature 2016

Ansprechpartner für Medienvertreter:
Prof. Dr. Rupert Huber
Universität Regensburg
Lehrstuhl für Experimentelle und Angewandte Physik
Tel.: 0941 943-2071
rupert.huber@physik.uni-regensburg.de

Prof. Dr. Mackillo Kira
Philipps-Universität Marburg
Fachbereich Physik und Wissenschaftliches Zentrum für Materialwissenschaften
Tel.: 06421 28-24222
mackillo.kira@physik.uni-marburg.de

Alexander Schlaak | idw - Informationsdienst Wissenschaft
Weitere Informationen:
http://www.uni-regensburg.de/

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Heiß & kalt – Gegensätze ziehen sich an
25.04.2017 | Universität Wien

nachricht Astronomen-Team findet Himmelskörper mit „Schmauchspuren“
25.04.2017 | Rheinische Friedrich-Wilhelms-Universität Bonn

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: TU Chemnitz präsentiert weltweit einzigartige Pilotanlage für nachhaltigen Leichtbau

Wickelprinzip umgekehrt: Orbitalwickeltechnologie soll neue Maßstäbe in der großserientauglichen Fertigung komplexer Strukturbauteile setzen

Mitarbeiterinnen und Mitarbeiter des Bundesexzellenzclusters „Technologiefusion für multifunktionale Leichtbaustrukturen" (MERGE) und des Instituts für...

Im Focus: Smart Wireless Solutions: EU-Großprojekt „DEWI“ liefert Innovationen für eine drahtlose Zukunft

58 europäische Industrie- und Forschungspartner aus 11 Ländern forschten unter der Leitung des VIRTUAL VEHICLE drei Jahre lang, um Europas führende Position im Bereich Embedded Systems und dem Internet of Things zu stärken. Die Ergebnisse von DEWI (Dependable Embedded Wireless Infrastructure) wurden heute in Graz präsentiert. Zu sehen war eine Fülle verschiedenster Anwendungen drahtloser Sensornetzwerke und drahtloser Kommunikation – von einer Forschungsrakete über Demonstratoren zur Gebäude-, Fahrzeug- oder Eisenbahntechnik bis hin zu einem voll vernetzten LKW.

Was vor wenigen Jahren noch nach Science-Fiction geklungen hätte, ist in seinem Ansatz bereits Wirklichkeit und wird in Zukunft selbstverständlicher Teil...

Im Focus: Weltweit einzigartiger Windkanal im Leipziger Wolkenlabor hat Betrieb aufgenommen

Am Leibniz-Institut für Troposphärenforschung (TROPOS) ist am Dienstag eine weltweit einzigartige Anlage in Betrieb genommen worden, mit der die Einflüsse von Turbulenzen auf Wolkenprozesse unter präzise einstellbaren Versuchsbedingungen untersucht werden können. Der neue Windkanal ist Teil des Leipziger Wolkenlabors, in dem seit 2006 verschiedenste Wolkenprozesse simuliert werden. Unter Laborbedingungen wurden z.B. das Entstehen und Gefrieren von Wolken nachgestellt. Wie stark Luftverwirbelungen diese Prozesse beeinflussen, konnte bisher noch nicht untersucht werden. Deshalb entstand in den letzten Jahren eine ergänzende Anlage für rund eine Million Euro.

Die von dieser Anlage zu erwarteten neuen Erkenntnisse sind wichtig für das Verständnis von Wetter und Klima, wie etwa die Bildung von Niederschlag und die...

Im Focus: Nanoskopie auf dem Chip: Mikroskopie in HD-Qualität

Neue Erfindung der Universitäten Bielefeld und Tromsø (Norwegen)

Physiker der Universität Bielefeld und der norwegischen Universität Tromsø haben einen Chip entwickelt, der super-auflösende Lichtmikroskopie, auch...

Im Focus: Löschbare Tinte für den 3-D-Druck

Im 3-D-Druckverfahren durch Direktes Laserschreiben können Mikrometer-große Strukturen mit genau definierten Eigenschaften geschrieben werden. Forscher des Karlsruher Institus für Technologie (KIT) haben ein Verfahren entwickelt, durch das sich die 3-D-Tinte für die Drucker wieder ‚wegwischen‘ lässt. Die bis zu hundert Nanometer kleinen Strukturen lassen sich dadurch wiederholt auflösen und neu schreiben - ein Nanometer entspricht einem millionstel Millimeter. Die Entwicklung eröffnet der 3-D-Fertigungstechnik vielfältige neue Anwendungen, zum Beispiel in der Biologie oder Materialentwicklung.

Beim Direkten Laserschreiben erzeugt ein computergesteuerter, fokussierter Laserstrahl in einem Fotolack wie ein Stift die Struktur. „Eine Tinte zu entwickeln,...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Internationaler Tag der Immunologie - 29. April 2017

28.04.2017 | Veranstaltungen

Kampf gegen multiresistente Tuberkulose – InfectoGnostics trifft MYCO-NET²-Partner in Peru

28.04.2017 | Veranstaltungen

123. Internistenkongress: Traumata, Sprachbarrieren, Infektionen und Bürokratie – Herausforderungen

27.04.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Über zwei Millionen für bessere Bordnetze

28.04.2017 | Förderungen Preise

Symbiose-Bakterien: Vom blinden Passagier zum Leibwächter des Wollkäfers

28.04.2017 | Biowissenschaften Chemie

Wie Pflanzen ihre Zucker leitenden Gewebe bilden

28.04.2017 | Biowissenschaften Chemie