Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Forscher entwickeln Teilchenbeschleuniger für Quasiteilchen

12.05.2016

Kollisionsexperimente in Halbleitern erfolgreich

Unser Standardmodell der Elementarteilchen basiert auf Erkenntnissen, die mit Hilfe von Teilchenbeschleunigern und Kollisionsexperimenten gesammelt wurden. Ein Forscherteam der Universitäten in Regensburg, Marburg und Santa Barbara (USA) hat nun einen neuen Beschleuniger für Teilchen in Festkörpern entwickelt. Das revolutionäre Verfahren wird in der neuen Ausgabe der Fachzeitschrift „Nature“ vorgestellt (DOI: 10.1038/nature17958).


Ein Elektron (blau) und ein Loch (rot) prallen in einem Wolframdiselenid-Kristall (Gitter) zusammen. Die dabei freiwerdende Energie entlädt sich in hochenergetischen Photonen (bunter Lichtstrahl).

Bildnachweis: Fabian Langer - Zur ausschließlichen Verwendung im Rahmen der Berichterstattung zu dieser Pressemitteilung.

Schon kleine Kinder werfen unterschiedliche Dinge auf- und gegeneinander, um so etwas über die Eigenschaften der Gegenstände zu lernen. Teilchenbeschleuniger nutzen diese Herangehensweise zur kontrollierten Untersuchung der kleinsten Bausteine der uns umgebenden Materie. So beschoss der neuseeländische Physiker Ernest Rutherford bereits Anfang des 20. Jahrhunderts Goldfolien mit Alpha-Teilchen.

Aufgrund der Streueigenschaften der Alpha-Strahlung schloss er auf die Struktur des Streuzentrums und fand heraus, dass sich die Masse eines Atoms auf einen kleinen Raum – den Atomkern – konzentriert. Etwa 100 Jahre später kollidieren im Rahmen des bislang größten Experiments der modernen Wissenschaft am Kernforschungszentrum CERN hochenergetische Protonen miteinander, was schließlich zur Entdeckung des sagenumwobenen Higgs-Teilchens geführt hat.

Aufgrund der enormen Teilchenanzahl waren bislang allerdings Verfahren und Methoden zur Nutzung solcher Kollisionsexperimente für die Festkörperphysik unbekannt, obwohl unsere modernen Technologien wesentlich davon abhängen, die strukturellen und elektronischen Eigenschaften von Festkörpern zu verstehen. Gleichwohl kann in einem Festkörper die komplexe Wechselwirkung von Billionen über Billionen von Teilchen auf einzelne Objekte reduziert werden, sogenannte Quasiteilchen.

Einem Team von Physikern um Prof. Dr. Rupert Huber (Universität Regensburg) und Prof. Dr. Mackillo Kira (Philipps-Universität Marburg) ist es nun in Kooperation mit Kollegen aus dem kalifornischen Santa Barbara gelungen, solche Quasiteilchen gezielt miteinander zu kollidieren. Dazu mussten die Forscher extrem schnell vorgehen, denn die Quasiteilchen existieren nur für einen winzigen Augenblick, etwa 10 Femtosekunden lang (1 Femtosekunde = 10 15 s), ehe sie durch Stöße mit umliegenden Elektronen unkontrolliert gestört werden und zerfallen.

Dieses Problem umgingen die Forscher mit Hilfe der Terahertz-Hochfeldquelle an der Universität Regensburg. Zunächst erzeugten die Forscher Paare von Quasiteilchen, sogenannte Elektron-Lochpaare, im Halbleiter Wolframdiselenid mit Hilfe eines superkurzen Lichtblitzes. Die gegensätzlich geladenen Quasiteilchen ziehen einander elektrostatisch an und bilden einen atomähnlichen Komplex, den man als Exziton bezeichnet.

Das starke, schwingende Lichtfeld aus der Terahertz-Hochfeldquelle trennt die beiden Quasiteilchen zunächst voneinander, um sie anschließend mit hoher Geschwindigkeit wieder miteinander zu kollidieren. Der gesamte Beschleunigungsprozess läuft dabei schneller als eine einzige Lichtschwingung ab. Die Kollisionen führen zu ultrakurzen Lichtblitzen, die wiederum – ähnlich wie in Großforschungsanlagen wie dem CERN – Rückschlüsse auf die Struktur der Quasiteilchen zulassen. Diese Beobachtungen wurden durch quantenmechanische Simulationen der Arbeitsgruppe an der Philipps-Universität Marburg unterstützt.

Die Experimente und Berechnungen der Forscher aus Regensburg, Marburg und Santa Barbara belegen, dass grundlegende Beschleunigerkonzepte aus der Teilchenphysik ebenso für Verfahren in der Festkörperphysik genutzt werden können. Die Experimente bieten neuartige Einblicke in die Eigenschaften von Quasiteilchen und könnten wesentlich zur Lösung einiger der größten Rätsel der modernen Physik wie etwa den Mechanismus der Hochtemperatursupraleitung beitragen.

Titel der Original-Publikation:
F. Langer, M. Hohenleutner, C. P. Schmid, C. Poellmann, P. Nagler, T. Korn, C. Schüller, M. S. Sherwin, U. Huttner, J. T. Steiner, S. W. Koch, M. Kira, and R. Huber, Lightwave-driven quasiparticle collisions on a subcycle timescale, Nature 2016

Ansprechpartner für Medienvertreter:
Prof. Dr. Rupert Huber
Universität Regensburg
Lehrstuhl für Experimentelle und Angewandte Physik
Tel.: 0941 943-2071
rupert.huber@physik.uni-regensburg.de

Prof. Dr. Mackillo Kira
Philipps-Universität Marburg
Fachbereich Physik und Wissenschaftliches Zentrum für Materialwissenschaften
Tel.: 06421 28-24222
mackillo.kira@physik.uni-marburg.de

Alexander Schlaak | idw - Informationsdienst Wissenschaft
Weitere Informationen:
http://www.uni-regensburg.de/

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Planeten außerhalb unseres Sonnensystems: Bayreuther Forscher dringen tief ins Weltall vor
23.02.2017 | Universität Bayreuth

nachricht Kühler Zwerg und die sieben Planeten
23.02.2017 | ESO Science Outreach Network - Haus der Astronomie

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: „Vernetzte Autonome Systeme“ von acatech und DFKI auf der CeBIT

Auf der IT-Messe CeBIT vom 20. bis 24. März präsentieren acatech – Deutsche Akademie der Technikwissenschaften und das Deutsche Forschungszentrum für Künstliche Intelligenz (DFKI) in Kooperation mit der Deutschen Messe AG vernetzte Autonome Systeme. In Halle 12 am Stand B 63 erwarten die Besucherinnen und Besucher unter anderem Roboter, die Hand in Hand mit Menschen zusammenarbeiten oder die selbstständig gefährliche Umgebungen erkunden.

Auf der IT-Messe CeBIT vom 20. bis 24. März präsentieren acatech – Deutsche Akademie der Technikwissenschaften und das Deutsche Forschungszentrum für...

Im Focus: Kühler Zwerg und die sieben Planeten

Erdgroße Planeten mit gemäßigtem Klima in System mit ungewöhnlich vielen Planeten entdeckt

In einer Entfernung von nur 40 Lichtjahren haben Astronomen ein System aus sieben erdgroßen Planeten entdeckt. Alle Planeten wurden unter Verwendung von boden-...

Im Focus: Mehr Sicherheit für Flugzeuge

Zwei Entwicklungen am Lehrgebiet Rechnerarchitektur der FernUniversität in Hagen können das Fliegen sicherer machen: ein Flugassistenzsystem, das bei einem totalen Triebwerksausfall zum Einsatz kommt, um den Piloten ein sicheres Gleiten zu einem Notlandeplatz zu ermöglichen, und ein Assistenzsystem für Segelflieger, das ihnen das Erreichen größerer Höhen erleichtert. Präsentiert werden sie von Prof. Dr.-Ing. Wolfram Schiffmann auf der Internationalen Fachmesse für Allgemeine Luftfahrt AERO vom 5. bis 8. April in Friedrichshafen.

Zwei Entwicklungen am Lehrgebiet Rechnerarchitektur der FernUniversität in Hagen können das Fliegen sicherer machen: ein Flugassistenzsystem, das bei einem...

Im Focus: HIGH-TOOL unterstützt Verkehrsplanung in Europa

Forschung am Karlsruher Institut für Technologie (KIT) unterstützt die Europäische Kommission bei der Verkehrsplanung: Anhand des neuen Modells HIGH-TOOL lässt sich bewerten, wie verkehrspolitische Maßnahmen langfristig auf Wirtschaft, Gesellschaft und Umwelt wirken. HIGH-TOOL ist ein frei zugängliches Modell mit Modulen für Demografie, Wirtschaft und Ressourcen, Fahrzeugbestand, Nachfrage im Personen- und Güterverkehr sowie Umwelt und Sicherheit. An dem nun erfolgreich abgeschlossenen EU-Projekt unter der Koordination des KIT waren acht Partner aus fünf Ländern beteiligt.

Forschung am Karlsruher Institut für Technologie (KIT) unterstützt die Europäische Kommission bei der Verkehrsplanung: Anhand des neuen Modells HIGH-TOOL lässt...

Im Focus: Zinn in der Photodiode: nächster Schritt zur optischen On-Chip-Datenübertragung

Schon lange suchen Wissenschaftler nach einer geeigneten Lösung, um optische Komponenten auf einem Computerchip zu integrieren. Doch Silizium und Germanium allein – die stoffliche Basis der Chip-Produktion – sind als Lichtquelle kaum geeignet. Jülicher Physiker haben nun gemeinsam mit internationalen Partnern eine Diode vorgestellt, die neben Silizium und Germanium zusätzlich Zinn enthält, um die optischen Eigenschaften zu verbessern. Das Besondere daran: Da alle Elemente der vierten Hauptgruppe angehören, sind sie mit der bestehenden Silizium-Technologie voll kompatibel.

Schon lange suchen Wissenschaftler nach einer geeigneten Lösung, um optische Komponenten auf einem Computerchip zu integrieren. Doch Silizium und Germanium...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Aufbruch: Forschungsmethoden in einer personalisierten Medizin

24.02.2017 | Veranstaltungen

Österreich erzeugt erstmals Erdgas aus Sonnen- und Windenergie

24.02.2017 | Veranstaltungen

Big Data Centrum Ostbayern-Südböhmen startet Veranstaltungsreihe

23.02.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Fraunhofer HHI auf dem Mobile World Congress mit VR- und 5G-Technologien

24.02.2017 | Messenachrichten

MWC 2017: 5G-Hauptstadt Berlin

24.02.2017 | Messenachrichten

Auf der molekularen Streckbank

24.02.2017 | Biowissenschaften Chemie