Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Forscher entdecken spektakuläre Vielfalt nanoporöser Kristalle

05.01.2016

Wissenschaftler der Freien Universität Brüssel und der Universität Leipzig haben bisher unbekannte Mechanismen des Molekültransportes in nanoporösen Materialien entdeckt. Sie widerlegten damit eine über Jahrzehnte unwidersprochene Annahme, indem sie zeigten, dass sich jedes einzelne nanoporöse Kristall sehr unterschiedlich verhalten kann. Diese Entdeckung führt zu einer radikalen Wende in der Erforschung des Gebietes. Bisher waren die Forscher von der falschen Annahme annähernder Gleichheit im Verhalten der einzelnen Kristalle ausgegangen. Ihre neuen Erkenntnisse veröffentlichten sie kürzlich in der renommierten Fachzeitschrift "Nature Materials".

Nanoporöse Materialien, wie zum Beispiel Zeolithe oder metall-organische Gerüstverbindungen, enthalten Poren mit Durchmessern von weniger als einem Millionstel eines Millimeters, in denen Moleküle gespeichert oder in andere Moleküle umgewandelt werden können.

Sie sind für unsere Gesellschaft von großer Bedeutung und finden vielfältige Anwendungen, etwa als umweltfreundliche Katalysatoren zur Beschleunigung der chemischen Umwandlung von Molekülen in technisch wertvolle Endprodukte und als molekulare "Schwämme" zur Reinigung von Gasen und Flüssigkeiten, zur Aufnahme von Kohlendioxid oder für medizinische Anwendungen.

Die Entwicklung und weitere Verbesserung solcher Anwendungen hängt entscheidend vom Verständnis der Mechanismen des Molekültransportes in den Nanoporen ab. So wird zum Beispiel die Geschwindigkeit chemischer Umwandlungen in den Nanoporen ganz wesentlich von der Transportgeschwindigkeit bestimmt.

Da nanoporöse Kristalle aus identischen Bausteinen zusammengesetzt sind, haben die Forscher bisher angenommen, dass die Mechanismen und die Geschwindigkeit des Molekültransports für die verschiedenen Kristalle ein und derselben Familie identisch sind.

In ihren Untersuchungen zur Gewinnung von Bio-Alkoholen als Alternative für Erdöl-Folgeprodukte arbeitete das belgische Forscherteam um Prof. Joeri Denayer und Dr. Julien Cousin-Saint-Remi (Freie Universität Brüssel) mit den Physiker-Kollegen der Universität Leipzig um Prof. Dr. Jörg Kärger und Prof. Dr. Jürgen Haase zusammen. Sie wollten grundlegende Einsicht in die Transportmechanismen von Alkohol-Molekülen in nanoporösen Festkörpern gewinnen.

Durch den Einsatz hochentwickelter Techniken der Mikro-Bildgebung, wie sie von den Leipziger Physikern um Kärger und Haase entwickelt wurden, konnte auf diesem Wege nachgewiesen werden, dass sich bei scheinbar identischen Kristallen die Transportgeschwindigkeiten um Größenordnungen unterscheiden können.

Diese Beobachtung lässt nicht nur die gegensätzlichen, einander oft widersprechenden Ergebnisse, von denen in der Vergangenheit berichtet wurde, in einem völlig anderen Licht erscheinen. Sie ist auch für die Entwicklung effizienterer chemischer Prozesse von großer Bedeutung.

"Die klassischen Methoden zur Untersuchung des Molekültransports gestatten es lediglich, das Transportverhalten gemittelt über viele Kristalle zu betrachten. Das kann aber zu völlig falschen Schlussfolgerungen in Hinblick auf die tatsächlich vorherrschenden Transportmechanismen und die ihnen zugrunde liegenden Materialeigenschaften führen", erklärt Kärger.

Die Ergebnisse dieser Zusammenarbeit helfen so anderen Forschern, die Diffusionsmechanismen in nanoporösen Materialien besser zu verstehen. Die detailgetreue Erforschung einzelner Kristalle ist somit ein wichtiger Beitrag zur Entwicklung neuer und besserer Materialien.

Originaltitel der Veröffentlichung in "Nature Materials": "The role of crystal diversity in understanding mass transfer in nanoporous materials" (Die Rolle der Kristall-Diversität zum Verständnis des Massentransports in nanoporösen Materialien) doi:10.1038/nmat4510

Weitere Informationen:

Prof. Dr. Jörg Kärger
Institut für Experimentelle Physik I
Telefon: +49 341 97-32502
E-Mail: kaerger@physik.uni-leipzig.de


Prof. Dr. Jürgen Haase
Institut für Experimentelle Physik II
Telefon: +49 341 97-32601
E-Mail: j.haase@physik.uni-leipzig.de


Dr. Julien Cousin-Saint-Remi
Freie Universität Brüssel
Telefon: +32 2 629 33 18
E-Mail: jcousins@vub.ac.be

Weitere Informationen:

http://www.nature.com/nmat/journal/vaop/ncurrent/full/nmat4510.html

Susann Huster | Universität Leipzig
Weitere Informationen:
http://www.uni-leipzig.de

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Individualisierte Faserkomponenten für den Weltmarkt
22.06.2017 | Laser Zentrum Hannover e.V. (LZH)

nachricht Innovative High Power LED Light Engine für den UV Bereich
22.06.2017 | Omicron - Laserage Laserprodukte GmbH

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Klima-Satellit: Mit robuster Lasertechnik Methan auf der Spur

Hitzewellen in der Arktis, längere Vegetationsperioden in Europa, schwere Überschwemmungen in Westafrika – mit Hilfe des deutsch-französischen Satelliten MERLIN wollen Wissenschaftler ab 2021 die Emissionen des Treibhausgases Methan auf der Erde erforschen. Möglich macht das ein neues robustes Lasersystem des Fraunhofer-Instituts für Lasertechnologie ILT in Aachen, das eine bisher unerreichte Messgenauigkeit erzielt.

Methan entsteht unter anderem bei Fäulnisprozessen. Es ist 25-mal wirksamer als das klimaschädliche Kohlendioxid, kommt in der Erdatmosphäre aber lange nicht...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: Die Schweiz in Pole-Position in der neuen ESA-Mission

Die Europäische Weltraumagentur ESA gab heute grünes Licht für die industrielle Produktion von PLATO, der grössten europäischen wissenschaftlichen Mission zu Exoplaneten. Partner dieser Mission sind die Universitäten Bern und Genf.

Die Europäische Weltraumagentur ESA lanciert heute PLATO (PLAnetary Transits and Oscillation of stars), die grösste europäische wissenschaftliche Mission zur...

Im Focus: Forscher entschlüsseln erstmals intaktes Virus atomgenau mit Röntgenlaser

Bahnbrechende Untersuchungsmethode beschleunigt Proteinanalyse um ein Vielfaches

Ein internationales Forscherteam hat erstmals mit einem Röntgenlaser die atomgenaue Struktur eines intakten Viruspartikels entschlüsselt. Die verwendete...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

10. HDT-Tagung: Elektrische Antriebstechnologie für Hybrid- und Elektrofahrzeuge

22.06.2017 | Veranstaltungen

„Fit für die Industrie 4.0“ – Tagung von Hochschule Darmstadt und Schader-Stiftung am 27. Juni

22.06.2017 | Veranstaltungen

Forschung zu Stressbewältigung wird diskutiert

21.06.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Individualisierte Faserkomponenten für den Weltmarkt

22.06.2017 | Physik Astronomie

Evolutionsbiologie: Wie die Zellen zu ihren Kraftwerken kamen

22.06.2017 | Biowissenschaften Chemie

Spinflüssigkeiten – zurück zu den Anfängen

22.06.2017 | Physik Astronomie