Forscher ebnen den Weg für elektronische Schaltungen aus Graphen

Graphen, ein zweidimensionales Bienenwabengitter aus Kohlenstoffatomen, wird auf einen Siliziumkarbid-Kristall (grau) synthetisiert. Durch gezielte Manipulation der Kristalleigenschaften wird eine Ansteuerelektrode (blau) im Siliziumkarbid erzeugt, mit der – über Kontakte aus Gold – der Stromfluss durch die Graphenschicht gesteuert werden kann. Grafik: J. Jobst, J. Lottes, M. Krieger<br>

Wissenschaftler der Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) haben jetzt ein Verfahren entwickelt, das es erlaubt, Bauelemente aus Graphen mithilfe einer integrierten Elektrode gezielt anzusteuern – eine wichtige Voraussetzung für industrielle Anwendungen. Ihre Forschungsergebnisse haben Prof. Dr. Heiko Weber, Daniel Waldmann, Johannes Jobst, Dr. Michael Krieger vom Lehrstuhl für Angewandte Physik und Prof. Dr. Thomas Seyller und Florian Speck vom Lehrstuhl für Technische Physik jetzt in der renommierten Zeitschrift „nature materials“ publiziert.

Graphen (mit der Betonung auf der zweiten Silbe) besteht aus einer einzigen Lage von Kohlenstoffatomen, die in einem aus Sechsecken zusammengesetzten Netzwerk so angeordnet sind, dass sie den ersten wahrhaft zweidimensionalen Festkörper bilden. Graphen begründet damit eine neue Klasse von Materialien. Seine Entdeckung im Jahre 2004 hat zu weltweiten Forschungsaktivitäten geführt, die nur mit denen anlässlich der Entdeckung der Hochtemperatursupraleiter vergleichbar sind. 2010 wurde die Entdeckung von Graphen mit dem Nobelpreis für Physik ausgezeichnet. Die Begeisterung der Wissenschaftler für dieses neue Material nährt sich aus den für einen Festkörper völlig neuen elektronischen, optischen und magnetischen Eigenschaften des Graphens. Diese revolutionären Eigenschaften stellen für den Forscher ein faszinierendes Labor neuer Physik dar, das es zu ergründen gilt; sie bergen aber auch ein ungeahntes Potenzial für Anwendungen, die von neuartigen Halbleiterbauelementen über chemische und biologische Sensoren bis zu Quanten-Computern reichen.

Um das große Potenzial von Graphen für elektronische Anwendungen nutzen zu können, ist die Schichtherstellung in hoher Qualität auf kristallinen Halbleiterscheiben – so genannten Wafern – sehr wichtig. Hier konnten Forscher der FAU einen bedeutenden Beitrag leisten: Prof. Dr. Thomas Seyller hat 2009 ein Verfahren entwickelt, mit dem Graphen in höchster Qualität auf Siliziumkarbid-Kristallen synthetisiert werden kann. Das Verfahren gilt in der Fachwelt als ein wichtiger Schritt auf dem Weg zu einer graphenbasierten Elektronik. Seyller erhielt dafür 2010 den Walter-Schottky-Preis der Deutschen Physikalischen Gesellschaft, den höchsten nationalen Preis für hervorragende Forschungsarbeiten zur Festkörperphysik.

Der nächste wichtige Schritt ist es, ausgehend von Graphen-Wafern Bauelemente herzustellen. Insbesondere gilt es, die Graphenschichten für elektronische Anwendungen ansteuerbar zu machen. Hier kommt das Trägermaterial ins Spiel: Siliziumkarbid ist ein Halbleiter, der durch geschickte Manipulation als integrierte Ansteuerelektrode verwendet werden kann. Das ist Professor Dr. Heiko Weber und seinem Team jetzt gelungen. Die FAU-Forscher haben nicht nur Musterbauelemente hergestellt, sondern konnten auch die physikalischen Effekte en détail erklären, die bei Verwendung einer solchen Elektrode auftreten können. Mit diesem Wissen ist es nun möglich, optimale integrierte Elektroden für Graphen für die verschiedensten Anwendungsbereiche maßzuschneidern. Der große Vorteil einer solchen Elektrode liegt auf der Hand: die Graphenschicht an der Oberfläche bleibt frei zugänglich. Dies eröffnet völlig neue Möglichkeiten sowohl in der Forschung als auch in der Anwendung, z. B. für ultra-empfindliche Sensoren, die sogar einzelne Atome detektieren können.

An diesen und weiteren Fragestellungen arbeiten die Erlanger Forscher im Rahmen des Exzellenzclusters „Engineering of Advanced Materials“ http://(www.eam.uni-erlangen.de) an der Friedrich-Alexander-Universität Erlangen-Nürnberg.

Weitere Informationen für die Medien:

Prof. Dr. Heiko Weber
Tel. 09131-85-28421
heiko.weber@physik.uni-erlangen.de

Media Contact

Pascale Anja Dannenberg idw

Weitere Informationen:

http://www.eam.uni-erlangen.de

Alle Nachrichten aus der Kategorie: Physik Astronomie

Von grundlegenden Gesetzen der Natur, ihre elementaren Bausteine und deren Wechselwirkungen, den Eigenschaften und dem Verhalten von Materie über Felder in Raum und Zeit bis hin zur Struktur von Raum und Zeit selbst.

Der innovations report bietet Ihnen hierzu interessante Berichte und Artikel, unter anderem zu den Teilbereichen: Astrophysik, Lasertechnologie, Kernphysik, Quantenphysik, Nanotechnologie, Teilchenphysik, Festkörperphysik, Mars, Venus, und Hubble.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Anlagenkonzepte für die Fertigung von Bipolarplatten, MEAs und Drucktanks

Grüner Wasserstoff zählt zu den Energieträgern der Zukunft. Um ihn in großen Mengen zu erzeugen, zu speichern und wieder in elektrische Energie zu wandeln, bedarf es effizienter und skalierbarer Fertigungsprozesse…

Ausfallsichere Dehnungssensoren ohne Stromverbrauch

Um die Sicherheit von Brücken, Kränen, Pipelines, Windrädern und vielem mehr zu überwachen, werden Dehnungssensoren benötigt. Eine grundlegend neue Technologie dafür haben Wissenschaftlerinnen und Wissenschaftler aus Bochum und Paderborn entwickelt….

Dauerlastfähige Wechselrichter

… ermöglichen deutliche Leistungssteigerung elektrischer Antriebe. Überhitzende Komponenten limitieren die Leistungsfähigkeit von Antriebssträngen bei Elektrofahrzeugen erheblich. Wechselrichtern fällt dabei eine große thermische Last zu, weshalb sie unter hohem Energieaufwand aktiv…

Partner & Förderer