Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Forscher ebnen den Weg für elektronische Schaltungen aus Graphen

07.04.2011
Graphen gilt wegen seiner physikalischen und chemischen Eigenschaften als eines der vielversprechendsten neuen Materialien.

Wissenschaftler der Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) haben jetzt ein Verfahren entwickelt, das es erlaubt, Bauelemente aus Graphen mithilfe einer integrierten Elektrode gezielt anzusteuern – eine wichtige Voraussetzung für industrielle Anwendungen. Ihre Forschungsergebnisse haben Prof. Dr. Heiko Weber, Daniel Waldmann, Johannes Jobst, Dr. Michael Krieger vom Lehrstuhl für Angewandte Physik und Prof. Dr. Thomas Seyller und Florian Speck vom Lehrstuhl für Technische Physik jetzt in der renommierten Zeitschrift „nature materials“ publiziert.


Graphen, ein zweidimensionales Bienenwabengitter aus Kohlenstoffatomen, wird auf einen Siliziumkarbid-Kristall (grau) synthetisiert. Durch gezielte Manipulation der Kristalleigenschaften wird eine Ansteuerelektrode (blau) im Siliziumkarbid erzeugt, mit der – über Kontakte aus Gold – der Stromfluss durch die Graphenschicht gesteuert werden kann. Grafik: J. Jobst, J. Lottes, M. Krieger

Graphen (mit der Betonung auf der zweiten Silbe) besteht aus einer einzigen Lage von Kohlenstoffatomen, die in einem aus Sechsecken zusammengesetzten Netzwerk so angeordnet sind, dass sie den ersten wahrhaft zweidimensionalen Festkörper bilden. Graphen begründet damit eine neue Klasse von Materialien. Seine Entdeckung im Jahre 2004 hat zu weltweiten Forschungsaktivitäten geführt, die nur mit denen anlässlich der Entdeckung der Hochtemperatursupraleiter vergleichbar sind. 2010 wurde die Entdeckung von Graphen mit dem Nobelpreis für Physik ausgezeichnet. Die Begeisterung der Wissenschaftler für dieses neue Material nährt sich aus den für einen Festkörper völlig neuen elektronischen, optischen und magnetischen Eigenschaften des Graphens. Diese revolutionären Eigenschaften stellen für den Forscher ein faszinierendes Labor neuer Physik dar, das es zu ergründen gilt; sie bergen aber auch ein ungeahntes Potenzial für Anwendungen, die von neuartigen Halbleiterbauelementen über chemische und biologische Sensoren bis zu Quanten-Computern reichen.

Um das große Potenzial von Graphen für elektronische Anwendungen nutzen zu können, ist die Schichtherstellung in hoher Qualität auf kristallinen Halbleiterscheiben – so genannten Wafern – sehr wichtig. Hier konnten Forscher der FAU einen bedeutenden Beitrag leisten: Prof. Dr. Thomas Seyller hat 2009 ein Verfahren entwickelt, mit dem Graphen in höchster Qualität auf Siliziumkarbid-Kristallen synthetisiert werden kann. Das Verfahren gilt in der Fachwelt als ein wichtiger Schritt auf dem Weg zu einer graphenbasierten Elektronik. Seyller erhielt dafür 2010 den Walter-Schottky-Preis der Deutschen Physikalischen Gesellschaft, den höchsten nationalen Preis für hervorragende Forschungsarbeiten zur Festkörperphysik.

Der nächste wichtige Schritt ist es, ausgehend von Graphen-Wafern Bauelemente herzustellen. Insbesondere gilt es, die Graphenschichten für elektronische Anwendungen ansteuerbar zu machen. Hier kommt das Trägermaterial ins Spiel: Siliziumkarbid ist ein Halbleiter, der durch geschickte Manipulation als integrierte Ansteuerelektrode verwendet werden kann. Das ist Professor Dr. Heiko Weber und seinem Team jetzt gelungen. Die FAU-Forscher haben nicht nur Musterbauelemente hergestellt, sondern konnten auch die physikalischen Effekte en détail erklären, die bei Verwendung einer solchen Elektrode auftreten können. Mit diesem Wissen ist es nun möglich, optimale integrierte Elektroden für Graphen für die verschiedensten Anwendungsbereiche maßzuschneidern. Der große Vorteil einer solchen Elektrode liegt auf der Hand: die Graphenschicht an der Oberfläche bleibt frei zugänglich. Dies eröffnet völlig neue Möglichkeiten sowohl in der Forschung als auch in der Anwendung, z. B. für ultra-empfindliche Sensoren, die sogar einzelne Atome detektieren können.

An diesen und weiteren Fragestellungen arbeiten die Erlanger Forscher im Rahmen des Exzellenzclusters „Engineering of Advanced Materials" http://(www.eam.uni-erlangen.de) an der Friedrich-Alexander-Universität Erlangen-Nürnberg.

Weitere Informationen für die Medien:

Prof. Dr. Heiko Weber
Tel. 09131-85-28421
heiko.weber@physik.uni-erlangen.de

Pascale Anja Dannenberg | idw
Weitere Informationen:
http://www.eam.uni-erlangen.de

Weitere Berichte zu: Bauelement Elektrode FAU Festkörper Graphen-Speicher Graphenschicht Physik Potenzial Schaltung Sensor

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Wissenschaftler entdecken seltene Ordnung von Elektronen in einem supraleitenden Kristall
22.08.2017 | Max-Planck-Institut für Chemische Physik fester Stoffe

nachricht Im Neptun regnet es Diamanten: Forscherteam enthüllt Innenleben kosmischer Eisgiganten
21.08.2017 | Helmholtz-Zentrum Dresden-Rossendorf

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Wissenschaftler entdecken seltene Ordnung von Elektronen in einem supraleitenden Kristall

In einem Artikel der aktuellen Ausgabe des Forschungsmagazins „Nature“ berichten Wissenschaftler vom Max-Planck-Institut für Chemische Physik fester Stoffe in Dresden von der Entdeckung eines seltenen Materiezustandes, bei dem sich die Elektronen in einem Kristall gemeinsam in einer Richtung bewegen. Diese Entdeckung berührt eine der offenen Fragestellungen im Bereich der Festkörperphysik: Was passiert, wenn sich Elektronen gemeinsam im Kollektiv verhalten, in sogenannten „stark korrelierten Elektronensystemen“, und wie „einigen sich“ die Elektronen auf ein gemeinsames Verhalten?

In den meisten Metallen beeinflussen sich Elektronen gegenseitig nur wenig und leiten Wärme und elektrischen Strom weitgehend unabhängig voneinander durch das...

Im Focus: Wie ein Bakterium von Methanol leben kann

Bei einem Bakterium, das Methanol als Nährstoff nutzen kann, identifizierten ETH-Forscher alle dafür benötigten Gene. Die Erkenntnis hilft, diesen Rohstoff für die Biotechnologie besser nutzbar zu machen.

Viele Chemiker erforschen derzeit, wie man aus den kleinen Kohlenstoffverbindungen Methan und Methanol grössere Moleküle herstellt. Denn Methan kommt auf der...

Im Focus: Topologische Quantenzustände einfach aufspüren

Durch gezieltes Aufheizen von Quantenmaterie können exotische Materiezustände aufgespürt werden. Zu diesem überraschenden Ergebnis kommen Theoretische Physiker um Nathan Goldman (Brüssel) und Peter Zoller (Innsbruck) in einer aktuellen Arbeit im Fachmagazin Science Advances. Sie liefern damit ein universell einsetzbares Werkzeug für die Suche nach topologischen Quantenzuständen.

In der Physik existieren gewisse Größen nur als ganzzahlige Vielfache elementarer und unteilbarer Bestandteile. Wie das antike Konzept des Atoms bezeugt, ist...

Im Focus: Unterwasserroboter soll nach einem Jahr in der arktischen Tiefsee auftauchen

Am Dienstag, den 22. August wird das Forschungsschiff Polarstern im norwegischen Tromsø zu einer besonderen Expedition in die Arktis starten: Der autonome Unterwasserroboter TRAMPER soll nach einem Jahr Einsatzzeit am arktischen Tiefseeboden auftauchen. Dieses Gerät und weitere robotische Systeme, die Tiefsee- und Weltraumforscher im Rahmen der Helmholtz-Allianz ROBEX gemeinsam entwickelt haben, werden nun knapp drei Wochen lang unter Realbedingungen getestet. ROBEX hat das Ziel, neue Technologien für die Erkundung schwer erreichbarer Gebiete mit extremen Umweltbedingungen zu entwickeln.

„Auftauchen wird der TRAMPER“, sagt Dr. Frank Wenzhöfer vom Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung (AWI) selbstbewusst. Der...

Im Focus: Mit Barcodes der Zellentwicklung auf der Spur

Darüber, wie sich Blutzellen entwickeln, existieren verschiedene Auffassungen – sie basieren jedoch fast ausschließlich auf Experimenten, die lediglich Momentaufnahmen widerspiegeln. Wissenschaftler des Deutschen Krebsforschungszentrums stellen nun im Fachjournal Nature eine neue Technik vor, mit der sich das Geschehen dynamisch erfassen lässt: Mithilfe eines „Zufallsgenerators“ versehen sie Blutstammzellen mit genetischen Barcodes und können so verfolgen, welche Zelltypen aus der Stammzelle hervorgehen. Diese Technik erlaubt künftig völlig neue Einblicke in die Entwicklung unterschiedlicher Gewebe sowie in die Krebsentstehung.

Wie entsteht die Vielzahl verschiedener Zelltypen im Blut? Diese Frage beschäftigt Wissenschaftler schon lange. Nach der klassischen Vorstellung fächern sich...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

International führende Informatiker in Paderborn

21.08.2017 | Veranstaltungen

Wissenschaftliche Grundlagen für eine erfolgreiche Klimapolitik

21.08.2017 | Veranstaltungen

DGI-Forum in Wittenberg: Fake News und Stimmungsmache im Netz

21.08.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Fraunhofer IPM präsentiert »Deep Learning Framework« zur automatisierten Interpretation von 3D-Daten

22.08.2017 | Informationstechnologie

Globale Klimaextreme nach Vulkanausbrüchen

22.08.2017 | Geowissenschaften

RWI/ISL-Containerumschlag-Index erreicht neuen Höchstwert

22.08.2017 | Wirtschaft Finanzen