Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Forscher der Universität Wien entwickeln neue Software für Europäische Südsternwarte (ESO)

30.05.2014

Utl.: Kalibrierung astronomischer Beobachtungsdaten optimiert Datenreduktionspipeline

Ohne Kalibrierung können astronomische Beobachtungsdaten nicht wissenschaftlich ausgewertet werden. Forscher um Astrophysiker Werner Zeilinger und Mathematiker Hans Georg Feichtinger, beide Universität Wien, entwickelten im Auftrag der Europäischen Südsternwarte (ESO) spezielle Softwaremodule für eine weitgehend automatisierte Kalibrierung. Diese neue Software, die in Datenreduktionspipelines der ESO Anwendung finden wird, filtert erfolgreich und effizient Verzerrungen aus Bildern heraus, die im optischen und infraroten Wellenlängenbereich aufgenommen wurden.


Der klare Himmel Chiles zeigt das rasch variierende rote und grüne Leuchten verschiedener Atome und Moleküle in den oberen Schichten der Erdatmosphäre.

(Foto: ESO/Yuri Beletsky)

Die aktuellen Forschungsgebiete der beobachtungsorientierten Astrophysik umfassen einen weiten Bereich von der Suche nach neuen Planetensystemen über das Studium von Schwarzen Löchern bis hin zur noch immer geheimnisvollen Dunklen Materie und Dunklen Energie. Viele grundlegend neue Erkenntnisse auf diesen Gebieten wurden durch bedeutende technologische Fortschritte im Bereich der Spiegelteleskope, Instrumentierung und Detektoren ermöglicht. Moderne Instrumente und großflächige Detektoren haben jedoch auch das Datenvolumen von astronomischen Beobachtungen dramatisch ansteigen lassen.

Kalibrierung von Beobachtungsdaten durch Datenreduktionspipeline

Astronomische Beobachtungsdaten enthalten nicht nur das Signal des astronomischen Objektes, sondern auch die Signaturen von vielen anderen Signalquellen. Dies sind zumeist Rauschquellen, hervorgerufen durch Turbulenzen in der Erdatmosphäre, elektronisches Detektorrauschen und andere Fehlerquellen. Die optischen Elemente von Teleskop und Instrument erzeugen unvermeidbare geometrische Verzerrungen in der registrierten Aufnahme. Voraussetzung, um Sternpositionen mit hoher Genauigkeit messen und mehrere Aufnahmen benachbarter Himmelsregionen zu einem Mosaik zusammensetzen zu können, ist, diese Verzerrungen zu korrigieren. Ein wichtiger Schritt bei der Auswertung der Beobachtungsdaten ist daher, die Störsignale zu eliminieren und die interessanten astronomischen Signale herauszuarbeiten. Bei den heutzutage anfallenden großen Datenmengen erfolgen diese Arbeitsschritte automatisiert im Rahmen einer sogenannten Datenreduktionspipeline. Die Europäische Südsternwarte ESO betreibt eine Vielzahl von Teleskopen, wobei jedes Instrument eine eigene spezifische Datenreduktionspipeline benötigt.

Spezielle Algorithmen von Astrophysik und Mathematik der Universität Wien

Ein Team um Werner Zeilinger vom Institut für Astrophysik der Universität Wien hat in Zusammenarbeit mit Hans Georg Feichtinger, Leiter der Numerical Harmonic Analysis Group an der Fakultät für Mathematik der Universität Wien, Softwaremodule entwickelt, die in den ESO-Datenreduktonspipelines Verwendung finden. Diese Module sind instrumentenunabhängig entwickelt worden und erlauben eine weitgehend automatisierte Kombination astronomischer Aufnahmen, die aus unterschiedlichen Beobachtungsepochen stammen. Dazu wurden spezielle Algorithmen entwickelt, um den Himmelshintergrund in den Datensätzen zu eliminieren und die Bilder geometrisch korrekt zusammenzusetzen. Diese Software kann für alle ESO-Instrumente im optischen und infraroten Wellenlängenbereich verwendet werden.

Weitere Projekte durch Kompetenz in Entwicklung von Kalibrierungssoftware

Die im Rahmen dieses Projektes gewonnenen Kompetenzen waren eine wichtige Komponente für die Mitgliedschaft der Universität Wien an drei internationalen Konsortien, die Instrumente für das European Extremely Large Telescope (E-ELT) bauen. Arbeitsgruppen am Institut für Astrophysik der Universität Wien sind an zwei Instrumenten beteiligt, die als "First-Light"-Instrumente 2025/26 am weltgrößten Teleskop eingesetzt werden; das dritte Projekt wird ein Instrument der zweiten Generation sein, bei dem die Designphase gerade begonnen hat. Bei all diesen Instrumenten zeichnet die Universität Wien für die Entwicklung der Kalibrierungssoftware und eines Instrumentensimulators verantwortlich. Über ein erfolgreiches Hochschulraumstrukturmittelprojekt konnte eine dreijährige Anbahnungsfinanzierung für diese Projekte realisiert werden.

Universitätsinterne Kooperation wird fortgesetzt

Die erfolgreiche universitätsinterne Kooperation zwischen dem Institut für Astrophysik und der Numerical Harmonic Analysis Group wird ebenso weiter geführt. Es ist geplant, gemeinsam mathematische Algorithmen zu entwickeln, die eine Reihe von Schlüsselaspekten in der astronomischen Datenanalyse behandeln, so z.B. die Verarbeitung von dreidimensionalen Datensätzen, die Entwicklung von Bilddekonvolutionsalgorithmen und Algorithmen zur Simulation von astronomischen Beobachtungen.

Beitrag des Mitgliedslands Österreich

ESO ist die führende internationale Organisation für astronomische Forschung und das wissenschaftlich produktivste Observatorium der Welt. Sie betreibt im Namen ihrer fünfzehn Mitgliedsländer Teleskope an drei Standorten in Chile – La Silla, Paranal und Chajnantor. Gemeinsam mit internationalen Partnern baut sie außerdem ALMA, eine Antennenanlage für Submillimeter- und Millimeter-Astronomie und entwickelt das European Extremely Large Telescope (E-ELT). Ein Teil der Beitrittsgebühr Österreichs wurde als Forschungsleistung eingebracht, die von den Universitäten Innsbruck, Linz und Wien sowie dem Johann Radon Institute for Computational and Applied Mathematics der Österreichischen Akademie der Wissenschaften ausgeführt wurde.

Weitere Informationen
Projektseiten: http://esosoft.univie.ac.at
ESO: http://www.eso.org
Institut für Astrophysik: http://astro.univie.ac.at
Numerical Harmonic Analysis Group: http://www.nuhag.eu

Wissenschaftliche Kontakte
Ao. Univ.-Prof. Dr. Werner W. Zeilinger
Institut für Astrophysik
Universität Wien
1180 Wien, Türkenschanzstraße 17
T +43-1-4277-518 65
werner.zeilinger@univie.ac.at

Ao. Univ.-Prof. Dr. Hans Georg Feichtinger
Numerical Harmonic Analysis Group
Fakultät für Mathematik
Universität Wien
1090 Wien, Oskar-Morgenstern-Platz 1
T +43-1-4277-506 96
hans.feichtinger@univie.ac.at

Dr. Oliver Czoske
Institut für Astrophysik
Universität Wien
1180 Wien, Türkenschanzstraße 17
T +43-1-4277-538 27
oliver.czoske@univie.ac.at

Rückfragehinweis
Mag. Veronika Schallhart
Pressebüro der Universität Wien
Forschung und Lehre
1010 Wien, Universitätsring 1
T +43-1-4277-175 30
M +43-664-602 77-175 30
veronika.schallhart@univie.ac.at

Die Universität Wien ist eine der ältesten und größten Universitäten Europas: An 15 Fakultäten und vier Zentren arbeiten rund 9.700 MitarbeiterInnen, davon 6.900 WissenschafterInnen. Die Universität Wien ist damit auch die größte Forschungsinstitution Österreichs sowie die größte Bildungsstätte: An der Universität Wien sind derzeit rund 92.000 nationale und internationale Studierende inskribiert. Mit über 180 Studien verfügt sie über das vielfältigste Studienangebot des Landes. Die Universität Wien ist auch eine bedeutende Einrichtung für Weiterbildung in Österreich. 1365 gegründet, feiert die Alma Mater Rudolphina Vindobonensis im Jahr 2015 ihr 650-jähriges Gründungsjubiläum. www.univie.ac.at

Veronika Schallhart | Universität Wien

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Vorstoß ins Innere der Atome
23.02.2018 | Max-Planck-Institut für Quantenoptik

nachricht Quanten-Wiederkehr: Alles wird wieder wie früher
23.02.2018 | Technische Universität Wien

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Vorstoß ins Innere der Atome

Mit Hilfe einer neuen Lasertechnologie haben es Physiker vom Labor für Attosekundenphysik der LMU und des MPQ geschafft, Attosekunden-Lichtblitze mit hoher Intensität und Photonenenergie zu produzieren. Damit konnten sie erstmals die Interaktion mehrere Photonen in einem Attosekundenpuls mit Elektronen aus einer inneren atomaren Schale beobachten konnten.

Wer die ultraschnelle Bewegung von Elektronen in inneren atomaren Schalen beobachten möchte, der benötigt ultrakurze und intensive Lichtblitze bei genügend...

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

Eine Gruppe von Forschern um Andrea Cavalleri am Max-Planck-Institut für Struktur und Dynamik der Materie (MPSD) in Hamburg hat eine Methode demonstriert, die es erlaubt die interatomaren Kräfte eines Festkörpers detailliert auszumessen. Ihr Artikel Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, nun online in Nature veröffentlich, erläutert, wie Terahertz-Laserpulse die Atome eines Festkörpers zu extrem hohen Auslenkungen treiben können.

Die zeitaufgelöste Messung der sehr unkonventionellen atomaren Bewegungen, die einer Anregung mit extrem starken Lichtpulsen folgen, ermöglichte es der...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Verlässliche Quantencomputer entwickeln

Internationalem Forschungsteam gelingt wichtiger Schritt auf dem Weg zur Lösung von Zertifizierungsproblemen

Quantencomputer sollen künftig algorithmische Probleme lösen, die selbst die größten klassischen Superrechner überfordern. Doch wie lässt sich prüfen, dass der...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Von festen Körpern und Philosophen

23.02.2018 | Veranstaltungen

Spannungsfeld Elektromobilität

23.02.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - April 2018

21.02.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Vorstoß ins Innere der Atome

23.02.2018 | Physik Astronomie

Wirt oder Gast? Proteomik gibt neue Aufschlüsse über Reaktion von Rifforganismen auf Umweltstress

23.02.2018 | Biowissenschaften Chemie

Wie Zellen unterschiedlich auf Stress reagieren

23.02.2018 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics