Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Forscher der FAU untersuchen das Wechselspiel von Raumkrümmung und Licht

22.12.2015

Astronomische Weiten im Labor einfangen

Um den Einfluss von Gravitation auf die Ausbreitung von Licht zu untersuchen, sind Wissenschaftler typischerweise auf astronomische Längenskalen und die Beteiligung enormer Massen angewiesen. Dass es auch anders geht, zeigen Physiker der Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) und der Friedrich-Schiller-Universität Jena:


Die Abbildung zeigt, wie sich ein Laserstrahl im Experiment entlang der zweidimensionalen Oberfläche einer sanduhrförmigen Glasfigur ausbreitet und sich dabei einmal um die Figurentaille windet. Diese Figur ist ein Beispiel für eine negativ gekrümmte Oberfläche (vergleiche z.B. mit einem Sattel), im Gegensatz zu einer positiv gekrümmten Oberfläche, wie die einer Kugel. (Bild: Vincent Schultheiß)

In der aktuellen Ausgabe der renommierten Fachzeitschrift Nature Photonics beantworten sie Fragen von astronomischer Tragweite in der Enge ihres Labors und lenken dabei den Fokus auf eine unterschätzte Materialeigenschaft – die Krümmung von Oberflächen.*

Gemäß Einsteins Allgemeiner Relativitätstheorie lässt sich Gravitation als Krümmung der vierdimensionalen Raumzeit beschreiben. Himmelskörper und auch Licht bewegen sich in diesem gekrümmten Raum entlang von Geodäten, die die lokal kürzeste Verbindung zwischen zwei Punkten darstellen, aber von außen betrachtet oft alles andere als gerade erscheinen.

Um die Lichtausbreitung in solch gekrümmten Räumen im Labor zu untersuchen, bedienen sich die Wissenschaftler um Prof. Dr. Ulf Peschel, Universität Jena, eines Tricks: Statt alle vier Dimensionen der Raumzeit zu verändern, reduzieren sie das Problem auf zwei Dimensionen und untersuchen die Lichtausbreitung entlang gekrümmter Oberflächen. Krümmung ist jedoch nicht gleich Krümmung.

„Während man zum Beispiel einen Zylinder oder Kegel leicht zu einem flachen Stück Papier auffalten kann, ist es nicht möglich, die Oberfläche einer Kugel flach auf dem Tisch auszubreiten, ohne dabei die Fläche zu zerreißen oder zumindest stark zu verzehren“, sagt Vincent Schultheiß, Doktorand an der FAU und Erstautor der Studie. „Das kennt man im Alltag von Weltkarten, die die Erdoberfläche immer verfälscht darstellen müssen. Die Krümmung der Kugeloberfläche ist eine intrinsische Eigenschaft, die sich nicht verändern lässt und Auswirkungen auf Geometrie und Physik innerhalb dieser zweidimensionalen Fläche hat.“

Im Experiment wurden die Auswirkungen genau dieser intrinsischen Krümmung des Raumes auf die Lichtausbreitung untersucht. Dazu wurde das Licht in einem schmalen Bereich nahe der Oberfläche eines maßgefertigten Körpers gefangen und so gezwungen, dem Verlauf der Oberfläche zu folgen. Dabei verhielt es sich während der Ausbreitung so, wie es der Ablenkung durch gewaltige Massen entspräche.

Durch eine Variation der Krümmung der Oberfläche kann man die Lichtausbreitung sogar steuern. Umgekehrt ist es aber auch möglich, durch eine Analyse der Lichtausbreitung etwas über die Krümmung der Oberfläche selbst zu lernen. Übertragen auf astronomische Beobachtungen heißt das, dass dem uns von weit entfernten Sternen erreichenden Licht wertvolle Informationen über den durchquerten Raum aufgeprägt sind.

In ihrer Arbeit untersuchten die Forscher hierzu die nach den beiden englischen Physikern Robert Hanbury Brown und Richard Twiss benannte Intensitätsinterferometrie, die zur Bestimmung der Größe sonnennaher Sterne verwendet wird. Bei diesem Messverfahren werden zwei Teleskope mit variablem Abstand auf den zu untersuchenden Stern ausgerichtet und die jeweils von beiden Standpunkten aus sichtbaren Helligkeitsschwankungen miteinander verglichen. Die Helligkeitsunterschiede sind eine Folge der Interferenz unabhängig voneinander auf der Sternoberfläche emittierten Lichts – in der Beobachtungsebene sichtbar als ein körniges Helligkeitsmuster – und erlauben es, Aussagen über die Größe des beobachteten Objektes zu machen.

Da die Lichtwege in einem gekrümmten Raum im Vergleich zum flachen Fall viel stärker dazu neigen zu konvergieren bzw. zu divergieren, ändert sich auch die Korngröße des Helligkeitsmusters in Abhängigkeit von der Raumkrümmung. Die Wissenschaftler konnten zeigen, dass die Kenntnis der Raumkrümmung entscheidend für die Interpretation der Ergebnisse ist, aber auch, wie sich derartige interferometrische Experimente dazu eignen, die allgemeine Krümmung des Universums genauer zu vermessen.

Ob die Forschungsergebnisse jedoch tatsächlich zu einem besseren Verständnis unseres Universums beitragen, steht bis jetzt noch in den Sternen. „Ziel unserer Forschung ist es zunächst, Erkenntnisse der Allgemeinen Relativitätstheorie durch die bewusste Modulierung von Oberflächen von Objekten in die Materialwissenschaften zu übertragen“, sagt Peschel. Dabei entstehen Verknüpfungspunkte zwischen diesen beiden auf den ersten Blick völlig verschiedenen Wissenschaftsdisziplinen.

„Vom Fabrikationsstandpunkt her sind flache Designs oft sehr viel leichter zu bewerkstelligen. Aber gekrümmte Oberflächen bergen ein bisher ungenutztes Potenzial zum Beispiel zur Steuerung von Lichtwegen in optischen Systemen. Durch lokale Variationen der Oberflächenkrümmung kann man oft das gleiche bewirken, wie durch eine Veränderung des Volumenmaterials selbst. Die Zahl nötiger Arbeitsschritte und verwendeter Materialien bei der Herstellung integrierter optischer Schaltkreise oder mikrooptischer Komponenten kann so eventuell reduziert werden. “

Entstanden ist die Studie am Exzellenzcluster Engineering of Advanced Materials (EAM) der FAU, in dem Forscher ganz unterschiedlicher Fachbereiche an der Entwicklung neuartiger Materialien arbeiten.

*doi: 10.1038/nphoton.2015.244

Weitere Informationen:
Vincent Schultheiß
Tel.: 09131/8520343
vincent.schultheiss@fau.de

Prof. Dr. Ulf Peschel
Tel.: 03641/947170
ulf.peschel@uni-jena.de

Dr. Susanne Langer | idw - Informationsdienst Wissenschaft
Weitere Informationen:
http://www.fau.de/
https://www.fau.de/2015/12/news/wissenschaft/astronomische-weiten-im-labor-einfangen/

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Klein bestimmt über groß?
29.03.2017 | Max-Planck-Institut für Dynamik und Selbstorganisation

nachricht Quantenkommunikation: Wie man das Rauschen überlistet
29.03.2017 | Technische Universität Wien

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Quantenkommunikation: Wie man das Rauschen überlistet

Wie kann man Quanteninformation zuverlässig übertragen, wenn man in der Verbindungsleitung mit störendem Rauschen zu kämpfen hat? Uni Innsbruck und TU Wien präsentieren neue Lösungen.

Wir kommunizieren heute mit Hilfe von Funksignalen, wir schicken elektrische Impulse durch lange Leitungen – doch das könnte sich bald ändern. Derzeit wird...

Im Focus: Entwicklung miniaturisierter Lichtmikroskope - „ChipScope“ will ins Innere lebender Zellen blicken

Das Institut für Halbleitertechnik und das Institut für Physikalische und Theoretische Chemie, beide Mitglieder des Laboratory for Emerging Nanometrology (LENA), der Technischen Universität Braunschweig, sind Partner des kürzlich gestarteten EU-Forschungsprojektes ChipScope. Ziel ist es, ein neues, extrem kleines Lichtmikroskop zu entwickeln. Damit soll das Innere lebender Zellen in Echtzeit beobachtet werden können. Sieben Institute in fünf europäischen Ländern beteiligen sich über die nächsten vier Jahre an diesem technologisch anspruchsvollen Projekt.

Die zukünftigen Einsatzmöglichkeiten des neu zu entwickelnden und nur wenige Millimeter großen Mikroskops sind äußerst vielfältig. Die Projektpartner haben...

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Das anwachsende Ende der Ordnung

Physiker aus Konstanz weisen sogenannte Mermin-Wagner-Fluktuationen experimentell nach

Ein Kristall besteht aus perfekt angeordneten Teilchen, aus einer lückenlos symmetrischen Atomstruktur – dies besagt die klassische Definition aus der Physik....

Im Focus: Wegweisende Erkenntnisse für die Biomedizin: NAD⁺ hilft bei Reparatur geschädigter Erbinformationen

Eine internationale Forschergruppe mit dem Bayreuther Biochemiker Prof. Dr. Clemens Steegborn präsentiert in 'Science' neue, für die Biomedizin wegweisende Forschungsergebnisse zur Rolle des Moleküls NAD⁺ bei der Korrektur von Schäden am Erbgut.

Die Zellen von Menschen und Tieren können Schäden an der DNA, dem Träger der Erbinformation, bis zu einem gewissen Umfang selbst reparieren. Diese Fähigkeit...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Industriearbeitskreis »Prozesskontrolle in der Lasermaterialbearbeitung ICPC« lädt nach Aachen ein

28.03.2017 | Veranstaltungen

Neue Methoden für zuverlässige Mikroelektronik: Internationale Experten treffen sich in Halle

28.03.2017 | Veranstaltungen

Wie Menschen wachsen

27.03.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Organisch-anorganische Heterostrukturen mit programmierbaren elektronischen Eigenschaften

29.03.2017 | Energie und Elektrotechnik

Klein bestimmt über groß?

29.03.2017 | Physik Astronomie

OLED-Produktionsanlage aus einer Hand

29.03.2017 | Messenachrichten