Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Forscher beobachten Quantenstrudel in kalten Helium-Tröpfchen

22.08.2014

Ein internationales Forscherteam unter Beteiligung von DESY-Forschern hat winzige Quantenstrudel in kalten Tröpfchen aus flüssigem Helium beobachtet. Die exotischen Strudel ordnen sich in den Nanotröpfchen zu dichtgepackten Gittern, wie das Team im US-Fachblatt "Science" berichtet.

Es ist das erste Mal, dass die Quantenstrudel, die bereits in größeren Proben von sogenanntem supraflüssigen Helium gesichtet worden sind, in Nantröpfchen nachgewiesen wurden. "Das Experiment hat unsere höchsten Erwartungen übertroffen", betont Andrey Vilesov von der Universität von Südkalifornien, einer der drei Leiter des Experiments.


Künstlerische Darstellung des Gitters aus Quantenstrudeln in einem supraflüssigen Tropfen.

Illustration: SLAC National Accelerator Laboratory

Das Edelgas Helium wird bei minus 269 Grad Celsius flüssig. Unterhalb von minus 271 Grad tritt ein Quanteneffekt auf, durch den das flüssige Helium jede innere Reibung verliert, es wird supraflüssig. In diesem exotischen Zustand kann es sogar Wände hinaufkriechen.

Um die Dynamik von supraflüssigem Helium zu erkunden, haben die Forscher winzige Helium-Nanotröpfchen mit dem derzeit weltstärksten Röntgenlaser durchleuchtet, der Linac Coherent Light Source LCLS am US-Beschleunigerzentrum SLAC in Kalifornien.

Die Herstellung der kalten Tröpfchen mit einem Durchmesser von nur 0,2 bis 2 tausendstel Millimetern war keine leichte Aufgabe. Die Wissenschaftler sprühten dazu flüssiges Helium durch eine feine Düse in eine Vakuumkammer. Im Flug verdunstete ein Teil des Heliums, und die Verdunstungskälte kühlte den Rest des Tropfens weiter.

"Nach einer Flugstrecke von wenigen Millimetern hatten die Tropfen den supraflüssigen Zustand erreicht und wurden kurz darauf vom intensiven Blitz des Röntgenlasers getroffen", erläutert DESY-Forscher Daniel Rolles vom Center for Free-Electron Laser Science CFEL, einer Gemeinschaftseinrichtung von DESY, Universität Hamburg und Max-Planck-Gesellschaft.

Die von einer Max-Planck-Gruppe am Hamburger CFEL entwickelte Vakuum-Experimentierkammer mit dem Namen CAMP erlaubte dabei eine besonders detaillierte Aufzeichnung der Röntgen-Streubilder der Nanotröpfchen. "CAMP hat zwei große Detektoren, die noch einzelne Photonen registrieren und deren Energie sehr genau bestimmen können", betont Benjamin Erk vom CFEL. "Die Detektoren schaffen dabei Serienbilder mit 120 Aufnahmen pro Sekunde."

"Die Analyse der Aufnahmen zeigte, dass überraschend viele Tropfen nicht wie erwartet kugelförmig waren, sondern durch schnelle Rotation stark in die Länge gezogen", berichtet Rolles. "Tatsächlich besaßen manche Tropfen mehr die Form eines dicken Rades mit zwei fast parallelen Seiten." Die Rotation stammt von der Ausdehnung der Tröpfchen in der Düse, durch die sie in die Experimentierkammer gelangen. Die Tröpfchen rotierten bis 14 Millionen Mal pro Sekunde - weit schneller als ein normaler runder Tropfen es nach den Gesetzen der klassischen Physik aushalten könnte.

Durch die schnelle Rotation formten sich im Inneren der Nanotröpfchen winzige sogenannte Quantenstrudel, die an Miniaturausgaben des Strudels am Badewannenabfluss erinnern. Dieses Phänomen war bereits in größeren Einheiten von supraflüssigem Helium beobachtet worden, wurde in den Nanotröpfchen jetzt aber zum ersten Mal nachgewiesen. Wie bereits früher beobachtet, bilden die Strudel ein regelmäßiges Gitter. "In den Nanotröpfchen sind die Quantenstrudel überraschenderweise 100 000 Mal dichter gepackt als in größeren Proben supraflüssigen Heliums, die zuvor untersucht wurden", sagt Vilesov.

"Was wir in diesem Experiment beobachtet haben, ist wirklich überraschend", betont Ko-Leiter Christoph Bostedt vom SLAC. Und Oliver Gessner vom Lawrence Berkeley Laboratory, dritter Ko-Leiter des Experiments, ergänzt: "Jetzt, da wir gezeigt haben, dass wir die Quantenrotation in Helium-Nanotröpfchen nachweisen und charakterisieren können, ist es wichtig, ihren Ursprung zu verstehen und letztlich sie zu kontrollieren." 

Das Deutsche Elektronen-Synchrotron DESY ist das führende deutsche Beschleunigerzentrum und eines der führenden weltweit. DESY ist Mitglied der Helmholtz-Gemeinschaft und wird zu 90 Prozent vom BMBF und zu 10 Prozent von den Ländern Hamburg und Brandenburg finanziert.

An seinen Standorten in Hamburg und Zeuthen bei Berlin entwickelt, baut und betreibt DESY große Teilchenbeschleuniger und erforscht damit die Struktur der Materie. Die Kombination von Forschung mit Photonen und Teilchenphysik bei DESY ist einmalig in Europa. Das Center for Free-Electron Laser Science CFEL ist eine Kooperation von DESY, Universität Hamburg und der Max-Planck-Gesellschaft.

Originalveröffentlichung
"Shapes and Vorticities of Superfluid Helium Nanodroplets "; Luis F. Gomez et al.; Science, 2014; DOI: 10.1126/science.1252395

Dr. Thomas Zoufal | idw - Informationsdienst Wissenschaft
Weitere Informationen:
http://www.desy.de/

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Eine Extra-Sekunde zum neuen Jahr
08.12.2016 | Physikalisch-Technische Bundesanstalt (PTB)

nachricht Heimcomputer entdecken rekordverdächtiges Pulsar-Neutronenstern-System
08.12.2016 | Max-Planck-Institut für Radioastronomie

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Rätsel um Mott-Isolatoren gelöst

Universelles Verhalten am Mott-Metall-Isolator-Übergang aufgedeckt

Die Ursache für den 1937 von Sir Nevill Francis Mott vorhergesagten Metall-Isolator-Übergang basiert auf der gegenseitigen Abstoßung der gleichnamig geladenen...

Im Focus: Poröse kristalline Materialien: TU Graz-Forscher zeigt Methode zum gezielten Wachstum

Mikroporöse Kristalle (MOFs) bergen große Potentiale für die funktionalen Materialien der Zukunft. Paolo Falcaro von der TU Graz et al zeigen in Nature Materials, wie man MOFs gezielt im großen Maßstab wachsen lässt.

„Metal-organic frameworks“ (MOFs) genannte poröse Kristalle bestehen aus metallischen Knotenpunkten mit organischen Molekülen als Verbindungselemente. Dank...

Im Focus: Gravitationswellen als Sensor für Dunkle Materie

Die mit der Entdeckung von Gravitationswellen entstandene neue Disziplin der Gravitationswellen-Astronomie bekommt eine weitere Aufgabe: die Suche nach Dunkler Materie. Diese könnte aus einem Bose-Einstein-Kondensat sehr leichter Teilchen bestehen. Wie Rechnungen zeigen, würden Gravitationswellen gebremst, wenn sie durch derartige Dunkle Materie laufen. Dies führt zu einer Verspätung von Gravitationswellen relativ zu Licht, die bereits mit den heutigen Detektoren messbar sein sollte.

Im Universum muss es gut fünfmal mehr unsichtbare als sichtbare Materie geben. Woraus diese Dunkle Materie besteht, ist immer noch unbekannt. Die...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Wie sich Zellen gegen Salmonellen verteidigen

Bioinformatiker der Goethe-Universität haben das erste mathematische Modell für einen zentralen Verteidigungsmechanismus der Zelle gegen das Bakterium Salmonella entwickelt. Sie können ihren experimentell arbeitenden Kollegen damit wertvolle Anregungen zur Aufklärung der beteiligten Signalwege geben.

Jedes Jahr sind Salmonellen weltweit für Millionen von Infektionen und tausende Todesfälle verantwortlich. Die Körperzellen können sich aber gegen die...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Firmen- und Forschungsnetzwerk Munitect tagt am IOW

08.12.2016 | Veranstaltungen

NRW Nano-Konferenz in Münster

07.12.2016 | Veranstaltungen

Wie aus reinen Daten ein verständliches Bild entsteht

05.12.2016 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Herz-Bindegewebe unter Strom

08.12.2016 | Biowissenschaften Chemie

Eine Extra-Sekunde zum neuen Jahr

08.12.2016 | Physik Astronomie

Wenn der Fluss krank ist – Fachseminar zu Gewässerökologie und Gewässerschutz

08.12.2016 | Seminare Workshops