Forscher aus den USA und Dresden entwickeln Breitband-Detektor aus Graphen

Die äußere Antenne des Detektors fängt langwellige Infrarot- und Terahertz-Strahlung ein und leitet sie zu einer Graphen-Flocke, die sich in der Mitte der Struktur befindet. M. Mittendorff

Eine kleine Flocke Graphen auf Siliziumcarbid und eine futuristisch anmutende Antenne – fertig ist der neue Graphen-Detektor. Diese vergleichsweise simple und auch preiswerte Konstruktion kann erstmals als einzelner Detektor den enorm großen Spektralbereich vom sichtbaren Licht bis zur Terahertz-Strahlung abdecken.

„Im Gegensatz zu anderen Halbleitern, wie Silizium oder Galliumarsenid, kann Graphen Licht von sehr unterschiedlicher Photonenenergie aufnehmen und in elektrische Signale umwandeln. Wir mussten hier nur noch mit einer breitbandigen Antenne und dem passenden Substrat die idealen Rahmenbedingungen schaffen“, erklärt Dr. Stephan Winnerl, Physiker am Institut für Ionenstrahlphysik und Materialforschung des HZDR.

Bereits 2013 hatte der damalige HZDR-Doktorand Martin Mittendorff den Vorgänger des Graphen-Detektors entwickelt. Als Postdoc an der University of Maryland hat er ihn nun zusammen mit seinen Dresdner Kollegen sowie Forschern aus Marburg, Regensburg und Darmstadt perfektioniert. Das Funktionsprinzip:

Die antennengekoppelte Graphen-Flocke absorbiert die Strahlung, wodurch die Energie der Photonen auf die Elektronen im Graphen übertragen wird. Solche „heißen Elektronen“ erhöhen den elektrischen Widerstand des Detektors und führen so zu schnellen elektrischen Signalen. In nur 40 Pikosekunden – das sind Billionstel einer Sekunde – kann der Detektor einfallendes Licht registrieren.

Großer Spektralbereich durch Siliziumcarbid-Substrat

Besonders die Auswahl des Substrats war jetzt ein entscheidender Schritt zur Verbesserung des kleinen Lichtfängers, wie Stephan Winnerl erläutert: „Zuvor verwendete Halbleiter-Substrate haben stets einige Wellenlängen absorbiert, Siliziumcarbid verhält sich hingegen im gesamten Spektralbereich passiv.“ Hinzu kommt eine Antenne, die wie ein Trichter wirkt und langwellige Infrarot- und Terahertz-Strahlung einfängt.

Die Wissenschaftler konnten so den abgedeckten Spektralbereich im Vergleich zum Vorgänger fast um den Faktor 90 steigern. Die kürzeste messbare Wellenlänge ist damit 1000 Mal kleiner als die längste. Zum Vergleich: Rot, das langwelligste Licht, das das menschliche Auge wahrnehmen kann, hat lediglich die doppelte Wellenlänge von Violett, dem kurzwelligsten sichtbaren Licht.

Am HZDR wird dieser optische Universaldetektor bereits genutzt, um die beiden Freie-Elektronen-Laser am ELBE-Zentrum für Hochleistungs-Strahlenquellen exakt mit anderen Lasern zu synchronisieren. Besonders wichtig ist diese Justierung für sogenannte Pump-Probe-Experimente: Dabei regen Forscher ein Material mit einem Laser an („pump“) und nutzen anschließend einen zweiten Laser mit anderer Wellenlänge zur Messung („probe“).

Für solche Untersuchungen müssen die Pulse der Laser exakt aufeinander abgestimmt werden. Dafür setzen die Wissenschaftler den Graphen-Detektor wie eine Stoppuhr ein: Er teilt ihnen mit, wann die Laserpulse ins Ziel kommen und durch seine große Bandbreite wird ein Wechsel des Detektors als potentielle Fehlerquelle vermieden. Ein weiterer Vorteil ist, dass alle Messungen bei Zimmertemperatur ablaufen können und auf die aufwendige und kostspielige Stickstoff- oder Heliumkühlung anderer Detektoren verzichtet werden kann.

Publikation:
M. Mittendorff, J. Kamann, J. Eroms, D. Weiss, C. Drexler, S. D. Ganichev, J. Kerbusch, A. Erbe, R. J. Suess, T. E. Murphy, S. Chatterjee, K. Kolata, J. Ohser, J. C. König-Otto, H. Schneider, M. Helm, S. Winnerl: “Universal ultrafast detector for short optical pulses based on graphene”, in Optics Express 23 (2015) 28728-28735 (DOI: 10.1364/OE.23.028728)

Weitere Informationen:
Dr. Stephan Winnerl
Institut für Ionenstrahlphysik und Materialforschung am HZDR
Tel. +49 351 260-3522
E-Mail: s.winnerl@hzdr.de

Medienkontakt:
Dr. Christine Bohnet | Pressesprecherin
Tel. +49 351 260-2450 | E-Mail: c.bohnet@hzdr.de

Das Helmholtz-Zentrum Dresden-Rossendorf (HZDR) forscht auf den Gebieten Energie, Gesundheit und Materie. Folgende Fragestellungen stehen hierbei im Fokus:
• Wie nutzt man Energie und Ressourcen effizient, sicher und nachhaltig?
• Wie können Krebserkrankungen besser visualisiert, charakterisiert und wirksam behandelt werden?
• Wie verhalten sich Materie und Materialien unter dem Einfluss hoher Felder und in kleinsten Dimensionen?
Das HZDR ist Mitglied der Helmholtz-Gemeinschaft, der größten Wissenschaftsorganisation Deutschlands. Es hat vier Standorte (Dresden, Leipzig, Freiberg und Grenoble) und beschäftigt rund 1.100 Mitarbeiter – davon etwa 500 Wissenschaftler inklusive 150 Doktoranden.

http://www.hzdr.de/presse/graphen-detektor

Media Contact

Simon Schmitt Helmholtz-Zentrum Dresden-Rossendorf

Alle Nachrichten aus der Kategorie: Physik Astronomie

Von grundlegenden Gesetzen der Natur, ihre elementaren Bausteine und deren Wechselwirkungen, den Eigenschaften und dem Verhalten von Materie über Felder in Raum und Zeit bis hin zur Struktur von Raum und Zeit selbst.

Der innovations report bietet Ihnen hierzu interessante Berichte und Artikel, unter anderem zu den Teilbereichen: Astrophysik, Lasertechnologie, Kernphysik, Quantenphysik, Nanotechnologie, Teilchenphysik, Festkörperphysik, Mars, Venus, und Hubble.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Neue universelle lichtbasierte Technik zur Kontrolle der Talpolarisation

Ein internationales Forscherteam berichtet in Nature über eine neue Methode, mit der zum ersten Mal die Talpolarisation in zentrosymmetrischen Bulk-Materialien auf eine nicht materialspezifische Weise erreicht wird. Diese „universelle Technik“…

Tumorzellen hebeln das Immunsystem früh aus

Neu entdeckter Mechanismus könnte Krebs-Immuntherapien deutlich verbessern. Tumore verhindern aktiv, dass sich Immunantworten durch sogenannte zytotoxische T-Zellen bilden, die den Krebs bekämpfen könnten. Wie das genau geschieht, beschreiben jetzt erstmals…

Immunzellen in den Startlöchern: „Allzeit bereit“ ist harte Arbeit

Wenn Krankheitserreger in den Körper eindringen, muss das Immunsystem sofort reagieren und eine Infektion verhindern oder eindämmen. Doch wie halten sich unsere Abwehrzellen bereit, wenn kein Angreifer in Sicht ist?…

Partner & Förderer