Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Fontänen aus der Tiefe des Kometen

03.07.2015

Forscher vermuten unter der Oberfläche von 67P/Churyumov-Gerasimenko große Hohlräume

Unter der Oberfläche des Rosetta-Kometen 67P/Churyumov-Gerasimenko erstrecken sich bis zu einige hundert Meter große Hohlräume, die nach und nach einstürzen. Zu diesem Ergebnis kommen Wissenschaftler unter Leitung des Göttinger Max-Planck-Instituts für Sonnensystemforschung, die Aufnahmen der Kometenoberfläche ausgewertet haben.


Aus einigen der Vertiefungen strömen Fontänen aus Staub ins All. Das wissenschaftliche Kamerasystem OSIRIS hat diese Aufnahme im Oktober 2014 aus einer Entfernung von sieben Kilometern eingefangen.

© ESA/Rosetta/MPS for OSIRIS Team MPS/UPD/LAM/IAA/SSO/INTA/UPM/DASP/IDA


Die schachtartigen Vertiefungen erlauben einen Blick bis zu zweihundert Meter ins Innere des Kometen. An ihren Innenseiten zeigen sich zum Teil geschichtete Strukturen. Diese Vertiefungen finden sich in der Region Seth auf dem „Rücken“ des Kometen. Diese Aufnahme entstand im September 2014 aus einer Entfernung von 28 Kilometern.

© ESA/Rosetta/MPS for OSIRIS Team MPS/UPD/LAM/IAA/SSO/INTA/UPM/DASP/IDA

Darin finden sich sonderbare, schachtartige Vertiefungen, die gewöhnlichen Kratern völlig unähnlich sind und aus denen Staub und Gas ins All entweichen. Offenbar entstehen diese Strukturen, wenn Hohlräume unter der Oberfläche des Kometen einsacken.

18 sonderbar schachtartige Vertiefungen, die alle auf der Nordhalbkugel des Kometen 67P/Churyumov-Gerasimenko auftreten, haben die Forscher unter Leitung von Jean-Baptiste Vincent untersucht. Sie werteten dazu Aufnahmen des Kometen aus, die das wissenschaftliche Kamerasystem OSIRIS an Bord der ESA-Raumsonde Rosetta in der Zeit von Juli bis Dezember vergangenen Jahres aufgenommen hatte.

Die schachtartigen Vertiefungen treten in verschiedenen Größen auf: Ihre Durchmesser liegen zwischen zehn und einigen hundert Metern. Zudem haben sie nahezu vertikale Seitenwände und sind außergewöhnlich tief. Die größeren von ihnen reichen bis zu zweihundert Meter ins Innere des Kometen. An ihren Innenseiten zeigen die Aufnahmen Schichtungen und Terrassierungen; der Boden ist meist eben.

Ähnliche Strukturen kennen Forscher bereits von den Kometen 9P/Tempel 1 und 81P/Wild 2, die Ziel der NASA-Missionen Deep Impact und Stardust waren. „Wegen ihrer ungewöhnlichen Form unterscheiden sich diese Schächte deutlich von Einschlagskratern“, sagt OSIRIS-Wissenschaftler Jean-Baptiste Vincent vom Max-Planck-Institut für Sonnensystemforschung. „Es scheint sich um ein typisches Merkmal von Kometen zu handeln.“

Einige der Vertiefungen sind zudem aktiv: Die Analysen der Forscher ergaben, dass feine Staubfontänen von den Innenseiten ausgehen. Dafür werteten die Wissenschaftler Aufnahmen ein und derselben Staubfontäne unter verschiedenen Blickwinkeln aus. „Auf diese Weise erhalten wir Informationen über die dreidimensionale Struktur der Fontänen und können ihren Ausgangspunkt auf der Kometenoberfläche bestimmen“, sagt Vincent.

Allerdings kann dieses „Staubspucken“ allein die ungewöhnlichen Strukturen nicht erschaffen haben. Gefrorene Gase, die unter dem Einfluss der Sonne aus dem Kometenboden verdampfen, können nicht genug Staub mit sich reißen, um Löcher dieser Größe zu erzeugen. Dafür wären zum Teil tausende von Jahren nötig.

67P/Churyumov-Gerasimenko dringt auf seiner Umlaufbahn jedoch erst seit 1959 ins innere Planetensystem und somit in die Nähe der Sonne vor. Und auch ein plötzlicher Aktivitätsausbruch, wie ihn Rosetta etwa in der Anflugphase Ende April 2014 beobachtete, ist nicht in der Lage, genügend Material zu bewegen.

Stattdessen spricht alles dafür, dass es sich bei den Löchern um eingestürzte Hohlräume handelt. „Offenbar werden diese unterirdischen Hohlräume mit der Zeit immer größer, bis die Deckschicht instabil wird und einbricht“, sagt Max-Planck-Forscher Holger Sierks, Koautor der Studie und Leiter des OSIRIS-Teams. Als Folge tritt an den Rändern der Vertiefung frisches Material zu Tage, aus dem Gase verdampfen und so die beobachteten Fontänen speist.

Doch wie sind die Hohlräume entstanden? Die Forscher sehen mehrere Möglichkeiten. So ist es etwa denkbar, dass das löchrige Innenleben des Kometen noch aus seiner Geburtsstunde stammt. Wenn sich kleinere Brocken, sogenannte Planetesimale, mit niedriger Geschwindigkeit zusammenballen, können Lücken zurückbleiben.

Ebenso denkbar ist es, dass gefrorenes Kohlendioxid und -monoxid aus der Tiefe verdampft und Hohlräume erzeugt. Gefrorenes Wasser hingegen verdampft bei deutlich höheren Temperaturen. Diese lassen sich unter der gut wärmeisolierenden, oberflächlichen Staubschicht des Kometen nur schwer durch Sonneneinstrahlung erreichen.

Stattdessen haben die Forscher eine andere Wärmequelle im Blick. Wenn im Kometenboden amorphes Eis – bei dem die Wassermoleküle unregelmäßig angeordnet sind –, kristallisiert, wird Wärme frei. Diese könnte ausreichen, um Wasser in ausreichender Menge zu verdampfen.

„Noch bevorzugen wir keine dieser drei Möglichkeiten. Vielleicht spielen auch alle Effekte zusammen“, sagt Sierks. „Wir hoffen aber sehr, dass die Mission in ihrem weiteren Verlauf Klarheit bringt.“

Schon jetzt erweisen sich die staubspuckenden Vertiefungen als hilfreiches Mittel der Altersbestimmung. „Da die Vertiefungen aktiv sind, verändern sie sich mit der Zeit“, meint Jean-Baptiste Vincent. Nach und nach dehnen sie sich aus; die Ränder ziehen sich zurück, so dass mancherorts terrassenartige Ebenen entstehen. Eine Kometenoberfläche, die noch tiefe Löcher aufweist, ist somit eher jung. Ältere Flächen zeigen sich als glatte Plateaus.


Ansprechpartner

Dr. Birgit Krummheuer
Presse- und Öffentlichkeitsarbeit

Max-Planck-Institut für Sonnensystemforschung, Göttingen
Telefon: +49 551 384979-462

E-Mail: krummheuer@mps.mpg.de


Dr. Jean-Baptiste Vincent
Max-Planck-Institut für Sonnensystemforschung, Göttingen
Telefon: +49 5556 979-539

E-Mail: Vincent@mps.mpg.de


Dr. Holger Sierks
OSIRIS Principal Investigator

Max-Planck-Institut für Sonnensystemforschung, Göttingen
Telefon: +49 551 384979-242

E-Mail: sierks@mps.mpg.de


Originalpublikation
Jean-Baptiste Vincent et al.

Large heterogeneities in comet 67P as revealed by active pits from sinkhole collapse

Nature, 2 July 2015

Dr. Birgit Krummheuer | Max-Planck-Institut für Sonnensystemforschung, Göttingen
Weitere Informationen:
http://www.mpg.de/9308980/fontaenen-aus-der-tiefe-des-kometen

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht APEX wirft einen Blick ins Herz der Finsternis
25.05.2018 | Max-Planck-Institut für Radioastronomie

nachricht Matrix-Theorie als Ursprung von Raumzeit und Kosmologie
23.05.2018 | Universität Wien

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Starke IT-Sicherheit für das Auto der Zukunft – Forschungsverbund entwickelt neue Ansätze

Je mehr die Elektronik Autos lenkt, beschleunigt und bremst, desto wichtiger wird der Schutz vor Cyber-Angriffen. Deshalb erarbeiten 15 Partner aus Industrie und Wissenschaft in den kommenden drei Jahren neue Ansätze für die IT-Sicherheit im selbstfahrenden Auto. Das Verbundvorhaben unter dem Namen „Security For Connected, Autonomous Cars (SecForCARs) wird durch das Bundesministerium für Bildung und Forschung mit 7,2 Millionen Euro gefördert. Infineon leitet das Projekt.

Bereits heute bieten Fahrzeuge vielfältige Kommunikationsschnittstellen und immer mehr automatisierte Fahrfunktionen, wie beispielsweise Abstands- und...

Im Focus: Powerful IT security for the car of the future – research alliance develops new approaches

The more electronics steer, accelerate and brake cars, the more important it is to protect them against cyber-attacks. That is why 15 partners from industry and academia will work together over the next three years on new approaches to IT security in self-driving cars. The joint project goes by the name Security For Connected, Autonomous Cars (SecForCARs) and has funding of €7.2 million from the German Federal Ministry of Education and Research. Infineon is leading the project.

Vehicles already offer diverse communication interfaces and more and more automated functions, such as distance and lane-keeping assist systems. At the same...

Im Focus: Mit Hilfe molekularer Schalter lassen sich künftig neuartige Bauelemente entwickeln

Einem Forscherteam unter Führung von Physikern der Technischen Universität München (TUM) ist es gelungen, spezielle Moleküle mit einer angelegten Spannung zwischen zwei strukturell unterschiedlichen Zuständen hin und her zu schalten. Derartige Nano-Schalter könnten Basis für neuartige Bauelemente sein, die auf Silizium basierende Komponenten durch organische Moleküle ersetzen.

Die Entwicklung neuer elektronischer Technologien fordert eine ständige Verkleinerung funktioneller Komponenten. Physikern der TU München ist es im Rahmen...

Im Focus: Molecular switch will facilitate the development of pioneering electro-optical devices

A research team led by physicists at the Technical University of Munich (TUM) has developed molecular nanoswitches that can be toggled between two structurally different states using an applied voltage. They can serve as the basis for a pioneering class of devices that could replace silicon-based components with organic molecules.

The development of new electronic technologies drives the incessant reduction of functional component sizes. In the context of an international collaborative...

Im Focus: GRACE Follow-On erfolgreich gestartet: Das Satelliten-Tandem dokumentiert den globalen Wandel

Die Satellitenmission GRACE-FO ist gestartet. Am 22. Mai um 21.47 Uhr (MESZ) hoben die beiden Satelliten des GFZ und der NASA an Bord einer Falcon-9-Rakete von der Vandenberg Air Force Base (Kalifornien) ab und wurden in eine polare Umlaufbahn gebracht. Dort nehmen sie in den kommenden Monaten ihre endgültige Position ein. Die NASA meldete 30 Minuten später, dass der Kontakt zu den Satelliten in ihrem Zielorbit erfolgreich hergestellt wurde. GRACE Follow-On wird das Erdschwerefeld und dessen räumliche und zeitliche Variationen sehr genau vermessen. Sie ermöglicht damit präzise Aussagen zum globalen Wandel, insbesondere zu Änderungen im Wasserhaushalt, etwa dem Verlust von Eismassen.

Potsdam, 22. Mai 2018: Die deutsch-amerikanische Satellitenmission GRACE-FO (Gravity Recovery And Climate Experiment Follow On) ist erfolgreich gestartet. Am...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Im Fokus: Klimaangepasste Pflanzen

25.05.2018 | Veranstaltungen

Größter Astronomie-Kongress kommt nach Wien

24.05.2018 | Veranstaltungen

22. Business Forum Qualität: Vom Smart Device bis zum Digital Twin

22.05.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Berufsausbildung mit Zukunft

25.05.2018 | Unternehmensmeldung

Untersuchung der Zellmembran: Forscher entwickeln Stoff, der wichtigen Membranbestandteil nachahmt

25.05.2018 | Interdisziplinäre Forschung

Starke IT-Sicherheit für das Auto der Zukunft – Forschungsverbund entwickelt neue Ansätze

25.05.2018 | Informationstechnologie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics