Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Flüchtigen Elementarteilchen auf der Spur

09.12.2015

FAU-Astroteilchenphysiker an europäischem KM3NeT-Neutrinoteleskop beteiligt

Am frühen Morgen des 3. Dezember 2015 haben Wissenschaftler und Ingenieure aus neun europäischen Ländern mit dem Aufbau von KM3NeT begonnen, dem zukünftig größten Neutrino-Detektor auf der nördlichen Erdhalbkugel.


Der auf den kugelförmigen Installationsrahmen aufgewickelte String vor der Installation

KM3NeT Collaboration


Ein Block des KM3NeT-Detektors enthält 115 Strings

KM3NeT Collaboration

Das Teleskop vor den Küsten Italiens und Frankreichs im Mittelmeer wird fundamentale Eigenschaften der Neutrinos untersuchen und eine Himmelskarte der Herkunftsrichtungen hochenergetischer kosmischer Neutrinos erstellen, die bei den gewaltigsten astrophysikalischen Prozessen im Universum entstehen.

Das Team um Prof. Dr. Gisela Anton und Prof. Dr. Uli Katz vom Erlangen Center for Astroparticle Physics (ECAP) der Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) trägt zu KM3NeT mit Simulations- und Physikstudien sowie der Produktion von Sensor-Modulen bei. Außerdem sind die Erlanger verantwortlich für die Software-Entwicklung.

Neutrinos sind die flüchtigsten Elementarteilchen und ihr Nachweis erfordert die Instrumentierung enormer Nachweisvolumen: Das KM3NeT-Neutrinoteleskop wird mehr als einen Kubikkilometer Meereswasser umfassen. Es besteht aus einem Netzwerk von mehreren hundert vertikalen Detektor-Einheiten, sog. Strings.

Jeder String wird am Meeresboden verankert, durch eine Unterwasserboje an seinem oberen Ende straff gehalten und trägt 18 Lichtsensor-Module, die gleichmäßig über seine Länge von 700 m verteilt sind. In der absoluten Dunkelheit der Tiefsee werden damit die schwachen Lichtblitze nachgewiesen, die Reaktionen von Neutrinos mit den Atomkernen des Meereswassers anzeigen.

Der erste KM3NeT-String erreichte den italienischen KM3NeT-Standort südöstlich von Sizilien an Bord des Installationsschiffes Ambrosius Tide. Der String – auf einem kugelförmigen Rahmen aufgewickelt, ähnlich einem Wollknäuel – wurde in 3500 m Tiefe zum Meeresboden herabgelassen und mittels eines ferngesteuerten Tiefsee-Tauchboots an das Verbindungsmodul angeschlossen, von der das 100 km lange Hauptkabel zur Küstenstation in Portopalo di Capo Passero führt.

Marco Circella, technischer Direktor von KM3NeT, erklärt: „Die große Meerestiefe schirmt das Teleskop nicht nur völlig gegen Tageslicht ab, sondern auch weitgehend gegen Teilchen, die durch die kosmische Strahlung in der Atmosphäre erzeugt werden. Der Aufbau einer solch riesigen Forschungsinfrastruktur in mehreren Kilometer Wassertiefe ist eine enorme technische Herausforderung. So sind z.B. für die Unterwasser-Kabelverbindungen speziell angefertigte Steckverbinder notwendig, die Glasfaserverbindungen mit Mikrometer-Genauigkeit herstellen können. Die Besatzung der Ambrosius Tide ist spezialisiert auf solche schwierigen Tiefsee-Einsätze.“

Nach Überprüfung der elektrischen und der Glasfaser-Verbindung zur Küstenstation wurde das Entrollen des Strings eingeleitet. Ausgelöst durch ein akustisches Signal wurde der Installationsrahmen vom Anker gelöst und stieg langsam zur Oberfläche auf. Dabei rotierte er um eine horizontale Achse und gab Stück für Stück den String in seiner ganzen Länge frei. Der String wurde dann von der Küstenstation aus angeschaltet und lieferte die ersten Daten zur Küste.

Prof. Uli Katz, Physik- und Software-Direktor von KM3NeT und Inhaber des Lehrstuhls für Astroteilchenphysik am Erlangen Center for Astroparticle Physics (ECAP) der FAU zeigt sich begeistert: „Es ist ein überwältigender Erfolg, dass der erste String voll funktionsfähig ist und seit dem Einschalten hochwertige Daten liefert. Innerhalb weniger Stunden konnten bereits die ersten Teilchen von Reaktionen kosmischer Strahlung in der Atmosphäre rekonstruiert werden. Mit großer Vorfreude erwarten wir die Daten des wachsenden KM3NeT-Detektors.“ Der Erlanger Beitrag zu KM3NeT setzt sich aus Simulations- und Physikstudien sowie der Produktion von Sensor-Modulen zusammen. Das ECAP-Team ist außerdem verantwortlich für die Software-Entwicklung.

Rosanna Cocimano, die für die Stromversorgung von KM3NeT verantwortlich ist, führt aus: „Ein elektro-optisches Netzwerk von Kabeln verteilt die Hochspannung von der Küste an die Lichtsensor-Module in der Tiefsee. Die gemessenen Lichtsignale werden in den Modulen digitalisiert und über Glasfaserverbindungen zur Küstenstation übertragen.“

Die erste erfolgreiche Datenentnahme aus der Tiefsee mit der bahnbrechenden, von der KM3NeT-Kollaboration entwickelten Technologie ist ein entscheidender Meilenstein für das Projekt und stellt den vorläufigen Höhepunkt eines Jahrzehnts intensiver Forschung und Entwicklung in den vielen beteiligten Forschungsinstituten dar.

Maarten de Jong, Sprecher und Direktor von KM3NeT, erklärt: „Dieser wichtige Schritt bestätigt Design und Technologie des KM3NeT-Detektors. Die Kollaboration wird nun mit großer Zuversicht mit der Massenproduktion von Detektor-Strings und ihrer Installation an den KM3NeT-Standorten in Italien und vor der französischen Mittelmeerküste bei Toulon beginnen. Ein neues Zeitalter der Neutrinoastronomie hat angefangen.“

Partnerinstitute der KM3NeT-Kollaboration:
France: Centre de Physique des Particules de Marseille (CPPM), AstroParticule et Cosmologie (APC, Paris), Institute Pluridisciplinaire Hubert Curien (IPHC, Strasbourg),
Germany: Erlangen Centre for Astroparticle Physics (ECAP) und Dr.-Karl-Remeis-Sternwarte Bamberg (beide FAU), Kepler Centre for Astro and Particle Physics (Tübingen), Julius-Maximilian-Universität Würzburg,
Greece: National Centre for Scientific Research “Demokritos” (NCSR-D, Athens), National and Kapodistrian University of Athens, Hellenic Open University (Patras), Aristotle University of Thessaloniki, Technological Education Institute of Piraeus
Italy: Laboratori Nazionali del Sud (INFN/LNS, Catania), University of Bari, University of Bologna, University of Catania, University of Genova, University of Napoli, University of Pisa, University La Sapienza (Rome), University of Salerno, Napoli Gruppo Collegeato di Salerno, Laboratori Nazionali di Frascati (INFN/LNF), Istituto Nazionali di Geofisica e Vulcanologia (INGV, Rome)
Morocco: Mohammed First University (Oujda)
The Netherlands: National institute for subatomic physics (Nikhef, Amsterdam), Universiteit van Amsterdam, Universiteit van Leiden, Universiteit van Groningen (RUG/KVI), Nationaal Instituut voor Onderzoek der Zee (NIOZ, Texel), TNO
Poland: National Centre for Nuclear Research (NCBJ, Warsaw)
Spain: Instituto de Fisica Corpuscular (IFIC/CSIC, Valencia), Polytechnical University Valencia (UPV), Technical University of Catalonia (UPC, Barcelona)

Weitere Institute sind als Beobachter eingebunden.

Ansprechpartner:
Prof. Dr. Uli Katz
KM3NeT Physik- und Software-Direktor
Erlangen Centre for Astroparticle Physics, FAU
Tel: +4991318527072
katz@pysik.uni-erlangen.de

Weitere Informationen:

http://www.km3net.org

Dr. Susanne Langer | idw - Informationsdienst Wissenschaft

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Maschinelles Lernen im Quantenlabor
19.01.2018 | Universität Innsbruck

nachricht Seltsames Verhalten eines Sterns offenbart Schwarzes Loch, das sich in riesigem Sternhaufen verbirgt
17.01.2018 | ESO Science Outreach Network - Haus der Astronomie

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Maschinelles Lernen im Quantenlabor

Auf dem Weg zum intelligenten Labor präsentieren Physiker der Universitäten Innsbruck und Wien ein lernfähiges Programm, das eigenständig Quantenexperimente entwirft. In ersten Versuchen hat das System selbständig experimentelle Techniken (wieder)entdeckt, die heute in modernen quantenoptischen Labors Standard sind. Dies zeigt, dass Maschinen in Zukunft auch eine kreativ unterstützende Rolle in der Forschung einnehmen könnten.

In unseren Taschen stecken Smartphones, auf den Straßen fahren intelligente Autos, Experimente im Forschungslabor aber werden immer noch ausschließlich von...

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Im Focus: Fliegen wird smarter – Kommunikationssystem LYRA im Lufthansa FlyingLab

• Prototypen-Test im Lufthansa FlyingLab
• LYRA Connect ist eine von drei ausgewählten Innovationen
• Bessere Kommunikation zwischen Kabinencrew und Passagieren

Die Zukunft des Fliegens beginnt jetzt: Mehrere Monate haben die Finalisten des Mode- und Technologiewettbewerbs „Telekom Fashion Fusion & Lufthansa FlyingLab“...

Im Focus: Ein Atom dünn: Physiker messen erstmals mechanische Eigenschaften zweidimensionaler Materialien

Die dünnsten heute herstellbaren Materialien haben eine Dicke von einem Atom. Sie zeigen völlig neue Eigenschaften und sind zweidimensional – bisher bekannte Materialien sind dreidimensional aufgebaut. Um sie herstellen und handhaben zu können, liegen sie bislang als Film auf dreidimensionalen Materialien auf. Erstmals ist es Physikern der Universität des Saarlandes um Uwe Hartmann jetzt mit Forschern vom Leibniz-Institut für Neue Materialien gelungen, die mechanischen Eigenschaften von freitragenden Membranen atomar dünner Materialien zu charakterisieren. Die Messungen erfolgten mit dem Rastertunnelmikroskop an Graphen. Ihre Ergebnisse veröffentlichen die Forscher im Fachmagazin Nanoscale.

Zweidimensionale Materialien sind erst seit wenigen Jahren bekannt. Die Wissenschaftler André Geim und Konstantin Novoselov erhielten im Jahr 2010 den...

Im Focus: Forscher entschlüsseln zentrales Reaktionsprinzip von Metalloenzymen

Sogenannte vorverspannte Zustände beschleunigen auch photochemische Reaktionen

Was ermöglicht den schnellen Transfer von Elektronen, beispielsweise in der Photosynthese? Ein interdisziplinäres Forscherteam hat die Funktionsweise wichtiger...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Kongress Meditation und Wissenschaft

19.01.2018 | Veranstaltungen

LED Produktentwicklung – Leuchten mit aktuellem Wissen

18.01.2018 | Veranstaltungen

6. Technologie- und Anwendungsdialog am 18. Januar 2018 an der TH Wildau: „Intelligente Logistik“

18.01.2018 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Elektrische Felder steuern Nano-Maschinen 100.000-mal schneller als herkömmliche Methoden

19.01.2018 | Energie und Elektrotechnik

Wie Pflanzen Licht sehen

19.01.2018 | Biowissenschaften Chemie

Kongress Meditation und Wissenschaft

19.01.2018 | Veranstaltungsnachrichten