Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Fließphänomene an festen Oberflächen: Grenzflächengeschwindigkeit als wichtige Größe nachgewiesen

10.02.2016

Wie man bewirken kann, dass Flüssigkeiten auf festen Oberflächen fast wie ein Schlitten gleiten können, haben jetzt Physiker der Saar-Universität gemeinsam mit Forscherkollegen aus Paris gezeigt: Möglich ist das durch Beschichtungen, die an der Grenzfläche zwischen Flüssigkeit und Oberfläche ein Rutschen der Flüssigkeit provozieren. In der Folge vergrößern sich auch die mittlere Fließgeschwindigkeit und der Durchsatz. Gezeigt wurde dies am Verhalten von Tropfen auf verschieden beschichteten Oberflächen beim Übergang in den Gleichgewichtszustand. Die Ergebnisse könnten für die Optimierung industrieller Prozesse nutzbar sein, beispielsweise zur Verarbeitung von Kunststoffen.

Die Studie wurde in der Fachzeitschrift PNAS (Proceedings of the National Academy of Sciences of the United States of America) veröffentlicht.


Polystyrol-Tropfen nehmen auf zwei unterschiedlichen Substraten langsam denselben Gleichgewichtskontaktwinkel ein, jedoch über unterschiedliche Geschwindigkeits- und Bewegungsprofile der Moleküle.

Grafik: Thomas Braun, Heidelberg

Strömen Flüssigkeiten über feste Oberflächen, so ist ihre Fließgeschwindigkeit unmittelbar an der Grenzfläche gleich null. „Durch eine spezielle Beschichtung der Oberfläche lässt sich die Grenzflächengeschwindigkeit der Flüssigkeit erhöhen. Damit verkleinern sich gleichzeitig die Scherkräfte innerhalb der Flüssigkeit, und ihre mittlere Fließgeschwindigkeit wird größer – maximal so viel, dass sich die Flüssigkeit nahezu wie ein Festkörper verhält, ohne jedoch ihre Viskosität zu ändern“, sagt Karin Jacobs, Professorin für Experimentalphysik an der Saar-Uni.

Wie sich unterschiedliche Oberflächen genau auf die Grenzflächengeschwindigkeiten und das Gleitverhalten von Flüssigkeitsfilmen auswirken, hat ihre Arbeitsgruppe anhand von Experimenten mit Polystyrol-Tropfen untersucht. „Polystyrol ist ein wichtiger Kunststoff, aus dem beispielsweise CD-Hüllen hergestellt werden“, erläutert Dr. Joshua D. McGraw. Der ehemalige Postdoc-Mitarbeiter in Jacobs‘ Forschungsgruppe hat die Studie geleitet und dabei mit Wissenschaftlern um Physikprofessor Ralf Seemann und Kollegen am ESPCI ParisTech in Paris zusammengearbeitet.

McGraw brachte einzelne Polystyrol-Tropfen auf dünne Unterlagen aus Glimmer auf, wo sie eine recht flache Form einnahmen. In diesem Zustand wurden sie eingefroren und auf zwei neue, „weniger polystyrolfreundliche“ Substrate aufgebracht, die sich an der Oberfläche nicht in ihrer chemischen Zusammensetzung, sondern nur in der Anordnung ihrer Atome voneinander unterschieden. Auf beiden zogen sich die Tropfen zu einer nahezu halbkugeligen Form zusammen.

„Tropfen haben immer die Tendenz, eine Gleichgewichtsform anzunehmen, bei der sie einen bestimmten Kontaktwinkel zur Oberfläche bilden. Dieser Gleichgewichtszustand wird von den Grenzflächenbedingungen bestimmt“, erklärt Karin Jacobs.

Auf beiden Substraten nahmen die Polystyrol-Tropfen den gleichen Gleichgewichtskontaktwinkel ein, allerdings zeigten Tropfenprofil-Messungen mit dem Rasterkraftmikroskop deutliche Unterschiede in der Art und Weise, wie sich die Tropfen beim Übergang vom kleineren zum größeren Kontaktwinkel in ihre neue Form zusammenziehen.

„Dies konnte nur bedeuten, dass sich die Moleküle in den Tropfen auf den zwei verschiedenen Unterlagen auf unterschiedlichen Wegen bewegen, dass also das Geschwindigkeitsprofil in beiden Tropfen unterschiedlich sein musste“, erläutern Dr. Martin Brinkmann und Dr. Tak Shing Chan aus der Gruppe von Professor Ralf Seemann. „Experimentell ist dies in der benötigten Auflösung allerdings nicht zugänglich. Daher waren wir auf Unterstützung durch unsere theoretisch arbeitenden Kollegen in Paris angewiesen.“

Die Saarbrücker Wissenschaftler vermuteten nämlich, dass die Geschwindigkeit der Flüssigkeit an der festen Oberfläche ein entscheidender Faktor für das Fließverhalten von Flüssigkeiten ist. Diese in ein Modell einzupflegen, gelang den Forscherkollegen am ESPCI in Paris. Aus der theoretischen Beschreibung konnten Martin Brinkmann und Tak Shing Chan anschließend Simulationen erstellen, die das Geschwindigkeitsfeld der Moleküle innerhalb eines Tropfens offenbaren.

„Damit konnten wir zeigen, dass bereits atomar kleine Modifikationen einer festen Oberfläche zu unterschiedlichen Geschwindigkeiten der Moleküle in einem flüssigen System führen können, welches die Dicke der Oberflächenbeschichtung um viele Größenordnungen übertrifft“, fasst Jacobs die Ergebnisse der Experimente zusammen.

Die Forschungsergebnisse können dazu beitragen, industrielle Prozesse zu optimieren, beispielsweise „beim Strangpressen von Polymeren“, sagt Karin Jacobs. Dabei werden Kunststoffe durch Düsen gepresst, ähnlich wie Spätzleteig durch eine Presse; bei beiden Vorgängen wirken hohe Scherkräfte. „Nachdem der Teig die Presse passiert hat, weitet sich der Strang aufgrund der nun geringeren Fließgeschwindigkeit auf“, so Jacobs. „Diese Strangaufweitung ist in der Industrie meist unerwünscht und könnte mit einer geeigneten Düsenbeschichtung unterdrückt werden.“

Link zur Veröffentlichung:
http://www.pnas.org/content/early/2016/01/15/1513565113.abstract
doi: 10.1073/pnas.1513565113

Kontakt:
Prof. Dr. Karin Jacobs
Universität des Saarlandes
Experimentalphysik
Tel.: 0681 302-717 88
E-Mail: k.jacobs@physik.uni-saarland.de
http://www.uni-saarland.de/jacobs

Gerhild Sieber | Universität des Saarlandes

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Erforschung von Elementarteilchen in Materialien
17.01.2017 | Max-Planck-Institut für Struktur und Dynamik der Materie

nachricht Vermeintlich junger Stern entpuppt sich als galaktischer Greis
16.01.2017 | Ruhr-Universität Bochum

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Erforschung von Elementarteilchen in Materialien

Laseranregung von Semimetallen ermöglicht die Erzeugung neuartiger Quasiteilchen in Festkörpersystemen sowie ultraschnelle Schaltung zwischen verschiedenen Zuständen.

Die Untersuchung der Eigenschaften fundamentaler Teilchen in Festkörpersystemen ist ein vielversprechender Ansatz für die Quantenfeldtheorie. Quasiteilchen...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Mit solaren Gebäudehüllen Architektur gestalten

Solarthermie ist in der breiten Öffentlichkeit derzeit durch dunkelblaue, rechteckige Kollektoren auf Hausdächern besetzt. Für ästhetisch hochwertige Architektur werden Technologien benötigt, die dem Architekten mehr Gestaltungsspielraum für Niedrigst- und Plusenergiegebäude geben. Im Projekt »ArKol« entwickeln Forscher des Fraunhofer ISE gemeinsam mit Partnern aktuell zwei Fassadenkollektoren für solare Wärmeerzeugung, die ein hohes Maß an Designflexibilität erlauben: einen Streifenkollektor für opake sowie eine solarthermische Jalousie für transparente Fassadenanteile. Der aktuelle Stand der beiden Entwicklungen wird auf der BAU 2017 vorgestellt.

Im Projekt »ArKol – Entwicklung von architektonisch hoch integrierten Fassadekollektoren mit Heat Pipes« entwickelt das Fraunhofer ISE gemeinsam mit Partnern...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Bundesweiter Astronomietag am 25. März 2017

17.01.2017 | Veranstaltungen

Über intelligente IT-Systeme und große Datenberge

17.01.2017 | Veranstaltungen

Aquakulturen und Fangquoten – was hilft gegen Überfischung?

16.01.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Bundesweiter Astronomietag am 25. März 2017

17.01.2017 | Veranstaltungsnachrichten

Intelligente Haustechnik hört auf „LISTEN“

17.01.2017 | Architektur Bauwesen

Satellitengestützte Lasermesstechnik gegen den Klimawandel

17.01.2017 | Maschinenbau