Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Fließphänomene an festen Oberflächen: Grenzflächengeschwindigkeit als wichtige Größe nachgewiesen

10.02.2016

Wie man bewirken kann, dass Flüssigkeiten auf festen Oberflächen fast wie ein Schlitten gleiten können, haben jetzt Physiker der Saar-Universität gemeinsam mit Forscherkollegen aus Paris gezeigt: Möglich ist das durch Beschichtungen, die an der Grenzfläche zwischen Flüssigkeit und Oberfläche ein Rutschen der Flüssigkeit provozieren. In der Folge vergrößern sich auch die mittlere Fließgeschwindigkeit und der Durchsatz. Gezeigt wurde dies am Verhalten von Tropfen auf verschieden beschichteten Oberflächen beim Übergang in den Gleichgewichtszustand. Die Ergebnisse könnten für die Optimierung industrieller Prozesse nutzbar sein, beispielsweise zur Verarbeitung von Kunststoffen.

Die Studie wurde in der Fachzeitschrift PNAS (Proceedings of the National Academy of Sciences of the United States of America) veröffentlicht.


Polystyrol-Tropfen nehmen auf zwei unterschiedlichen Substraten langsam denselben Gleichgewichtskontaktwinkel ein, jedoch über unterschiedliche Geschwindigkeits- und Bewegungsprofile der Moleküle.

Grafik: Thomas Braun, Heidelberg

Strömen Flüssigkeiten über feste Oberflächen, so ist ihre Fließgeschwindigkeit unmittelbar an der Grenzfläche gleich null. „Durch eine spezielle Beschichtung der Oberfläche lässt sich die Grenzflächengeschwindigkeit der Flüssigkeit erhöhen. Damit verkleinern sich gleichzeitig die Scherkräfte innerhalb der Flüssigkeit, und ihre mittlere Fließgeschwindigkeit wird größer – maximal so viel, dass sich die Flüssigkeit nahezu wie ein Festkörper verhält, ohne jedoch ihre Viskosität zu ändern“, sagt Karin Jacobs, Professorin für Experimentalphysik an der Saar-Uni.

Wie sich unterschiedliche Oberflächen genau auf die Grenzflächengeschwindigkeiten und das Gleitverhalten von Flüssigkeitsfilmen auswirken, hat ihre Arbeitsgruppe anhand von Experimenten mit Polystyrol-Tropfen untersucht. „Polystyrol ist ein wichtiger Kunststoff, aus dem beispielsweise CD-Hüllen hergestellt werden“, erläutert Dr. Joshua D. McGraw. Der ehemalige Postdoc-Mitarbeiter in Jacobs‘ Forschungsgruppe hat die Studie geleitet und dabei mit Wissenschaftlern um Physikprofessor Ralf Seemann und Kollegen am ESPCI ParisTech in Paris zusammengearbeitet.

McGraw brachte einzelne Polystyrol-Tropfen auf dünne Unterlagen aus Glimmer auf, wo sie eine recht flache Form einnahmen. In diesem Zustand wurden sie eingefroren und auf zwei neue, „weniger polystyrolfreundliche“ Substrate aufgebracht, die sich an der Oberfläche nicht in ihrer chemischen Zusammensetzung, sondern nur in der Anordnung ihrer Atome voneinander unterschieden. Auf beiden zogen sich die Tropfen zu einer nahezu halbkugeligen Form zusammen.

„Tropfen haben immer die Tendenz, eine Gleichgewichtsform anzunehmen, bei der sie einen bestimmten Kontaktwinkel zur Oberfläche bilden. Dieser Gleichgewichtszustand wird von den Grenzflächenbedingungen bestimmt“, erklärt Karin Jacobs.

Auf beiden Substraten nahmen die Polystyrol-Tropfen den gleichen Gleichgewichtskontaktwinkel ein, allerdings zeigten Tropfenprofil-Messungen mit dem Rasterkraftmikroskop deutliche Unterschiede in der Art und Weise, wie sich die Tropfen beim Übergang vom kleineren zum größeren Kontaktwinkel in ihre neue Form zusammenziehen.

„Dies konnte nur bedeuten, dass sich die Moleküle in den Tropfen auf den zwei verschiedenen Unterlagen auf unterschiedlichen Wegen bewegen, dass also das Geschwindigkeitsprofil in beiden Tropfen unterschiedlich sein musste“, erläutern Dr. Martin Brinkmann und Dr. Tak Shing Chan aus der Gruppe von Professor Ralf Seemann. „Experimentell ist dies in der benötigten Auflösung allerdings nicht zugänglich. Daher waren wir auf Unterstützung durch unsere theoretisch arbeitenden Kollegen in Paris angewiesen.“

Die Saarbrücker Wissenschaftler vermuteten nämlich, dass die Geschwindigkeit der Flüssigkeit an der festen Oberfläche ein entscheidender Faktor für das Fließverhalten von Flüssigkeiten ist. Diese in ein Modell einzupflegen, gelang den Forscherkollegen am ESPCI in Paris. Aus der theoretischen Beschreibung konnten Martin Brinkmann und Tak Shing Chan anschließend Simulationen erstellen, die das Geschwindigkeitsfeld der Moleküle innerhalb eines Tropfens offenbaren.

„Damit konnten wir zeigen, dass bereits atomar kleine Modifikationen einer festen Oberfläche zu unterschiedlichen Geschwindigkeiten der Moleküle in einem flüssigen System führen können, welches die Dicke der Oberflächenbeschichtung um viele Größenordnungen übertrifft“, fasst Jacobs die Ergebnisse der Experimente zusammen.

Die Forschungsergebnisse können dazu beitragen, industrielle Prozesse zu optimieren, beispielsweise „beim Strangpressen von Polymeren“, sagt Karin Jacobs. Dabei werden Kunststoffe durch Düsen gepresst, ähnlich wie Spätzleteig durch eine Presse; bei beiden Vorgängen wirken hohe Scherkräfte. „Nachdem der Teig die Presse passiert hat, weitet sich der Strang aufgrund der nun geringeren Fließgeschwindigkeit auf“, so Jacobs. „Diese Strangaufweitung ist in der Industrie meist unerwünscht und könnte mit einer geeigneten Düsenbeschichtung unterdrückt werden.“

Link zur Veröffentlichung:
http://www.pnas.org/content/early/2016/01/15/1513565113.abstract
doi: 10.1073/pnas.1513565113

Kontakt:
Prof. Dr. Karin Jacobs
Universität des Saarlandes
Experimentalphysik
Tel.: 0681 302-717 88
E-Mail: k.jacobs@physik.uni-saarland.de
http://www.uni-saarland.de/jacobs

Gerhild Sieber | Universität des Saarlandes

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Speicherdauer von Qubits für Quantencomputer weiter verbessert
09.12.2016 | Forschungszentrum Jülich

nachricht Elektronenautobahn im Kristall
09.12.2016 | Julius-Maximilians-Universität Würzburg

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Elektronenautobahn im Kristall

Physiker der Universität Würzburg haben an einer bestimmten Form topologischer Isolatoren eine überraschende Entdeckung gemacht. Die Erklärung für den Effekt findet sich in der Struktur der verwendeten Materialien. Ihre Arbeit haben die Forscher jetzt in Science veröffentlicht.

Sie sind das derzeit „heißeste Eisen“ der Physik, wie die Neue Zürcher Zeitung schreibt: topologische Isolatoren. Ihre Bedeutung wurde erst vor wenigen Wochen...

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Rätsel um Mott-Isolatoren gelöst

Universelles Verhalten am Mott-Metall-Isolator-Übergang aufgedeckt

Die Ursache für den 1937 von Sir Nevill Francis Mott vorhergesagten Metall-Isolator-Übergang basiert auf der gegenseitigen Abstoßung der gleichnamig geladenen...

Im Focus: Poröse kristalline Materialien: TU Graz-Forscher zeigt Methode zum gezielten Wachstum

Mikroporöse Kristalle (MOFs) bergen große Potentiale für die funktionalen Materialien der Zukunft. Paolo Falcaro von der TU Graz et al zeigen in Nature Materials, wie man MOFs gezielt im großen Maßstab wachsen lässt.

„Metal-organic frameworks“ (MOFs) genannte poröse Kristalle bestehen aus metallischen Knotenpunkten mit organischen Molekülen als Verbindungselemente. Dank...

Im Focus: Gravitationswellen als Sensor für Dunkle Materie

Die mit der Entdeckung von Gravitationswellen entstandene neue Disziplin der Gravitationswellen-Astronomie bekommt eine weitere Aufgabe: die Suche nach Dunkler Materie. Diese könnte aus einem Bose-Einstein-Kondensat sehr leichter Teilchen bestehen. Wie Rechnungen zeigen, würden Gravitationswellen gebremst, wenn sie durch derartige Dunkle Materie laufen. Dies führt zu einer Verspätung von Gravitationswellen relativ zu Licht, die bereits mit den heutigen Detektoren messbar sein sollte.

Im Universum muss es gut fünfmal mehr unsichtbare als sichtbare Materie geben. Woraus diese Dunkle Materie besteht, ist immer noch unbekannt. Die...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Firmen- und Forschungsnetzwerk Munitect tagt am IOW

08.12.2016 | Veranstaltungen

NRW Nano-Konferenz in Münster

07.12.2016 | Veranstaltungen

Wie aus reinen Daten ein verständliches Bild entsteht

05.12.2016 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Hochgenaue Versuchsstände für dynamisch belastete Komponenten – Workshop zeigt Potenzial auf

09.12.2016 | Seminare Workshops

Ein Nano-Kreisverkehr für Licht

09.12.2016 | Physik Astronomie

Pflanzlicher Wirkstoff lässt Wimpern wachsen

09.12.2016 | Biowissenschaften Chemie