Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Fließphänomene an festen Oberflächen: Grenzflächengeschwindigkeit als wichtige Größe nachgewiesen

10.02.2016

Wie man bewirken kann, dass Flüssigkeiten auf festen Oberflächen fast wie ein Schlitten gleiten können, haben jetzt Physiker der Saar-Universität gemeinsam mit Forscherkollegen aus Paris gezeigt: Möglich ist das durch Beschichtungen, die an der Grenzfläche zwischen Flüssigkeit und Oberfläche ein Rutschen der Flüssigkeit provozieren. In der Folge vergrößern sich auch die mittlere Fließgeschwindigkeit und der Durchsatz. Gezeigt wurde dies am Verhalten von Tropfen auf verschieden beschichteten Oberflächen beim Übergang in den Gleichgewichtszustand. Die Ergebnisse könnten für die Optimierung industrieller Prozesse nutzbar sein, beispielsweise zur Verarbeitung von Kunststoffen.

Die Studie wurde in der Fachzeitschrift PNAS (Proceedings of the National Academy of Sciences of the United States of America) veröffentlicht.


Polystyrol-Tropfen nehmen auf zwei unterschiedlichen Substraten langsam denselben Gleichgewichtskontaktwinkel ein, jedoch über unterschiedliche Geschwindigkeits- und Bewegungsprofile der Moleküle.

Grafik: Thomas Braun, Heidelberg

Strömen Flüssigkeiten über feste Oberflächen, so ist ihre Fließgeschwindigkeit unmittelbar an der Grenzfläche gleich null. „Durch eine spezielle Beschichtung der Oberfläche lässt sich die Grenzflächengeschwindigkeit der Flüssigkeit erhöhen. Damit verkleinern sich gleichzeitig die Scherkräfte innerhalb der Flüssigkeit, und ihre mittlere Fließgeschwindigkeit wird größer – maximal so viel, dass sich die Flüssigkeit nahezu wie ein Festkörper verhält, ohne jedoch ihre Viskosität zu ändern“, sagt Karin Jacobs, Professorin für Experimentalphysik an der Saar-Uni.

Wie sich unterschiedliche Oberflächen genau auf die Grenzflächengeschwindigkeiten und das Gleitverhalten von Flüssigkeitsfilmen auswirken, hat ihre Arbeitsgruppe anhand von Experimenten mit Polystyrol-Tropfen untersucht. „Polystyrol ist ein wichtiger Kunststoff, aus dem beispielsweise CD-Hüllen hergestellt werden“, erläutert Dr. Joshua D. McGraw. Der ehemalige Postdoc-Mitarbeiter in Jacobs‘ Forschungsgruppe hat die Studie geleitet und dabei mit Wissenschaftlern um Physikprofessor Ralf Seemann und Kollegen am ESPCI ParisTech in Paris zusammengearbeitet.

McGraw brachte einzelne Polystyrol-Tropfen auf dünne Unterlagen aus Glimmer auf, wo sie eine recht flache Form einnahmen. In diesem Zustand wurden sie eingefroren und auf zwei neue, „weniger polystyrolfreundliche“ Substrate aufgebracht, die sich an der Oberfläche nicht in ihrer chemischen Zusammensetzung, sondern nur in der Anordnung ihrer Atome voneinander unterschieden. Auf beiden zogen sich die Tropfen zu einer nahezu halbkugeligen Form zusammen.

„Tropfen haben immer die Tendenz, eine Gleichgewichtsform anzunehmen, bei der sie einen bestimmten Kontaktwinkel zur Oberfläche bilden. Dieser Gleichgewichtszustand wird von den Grenzflächenbedingungen bestimmt“, erklärt Karin Jacobs.

Auf beiden Substraten nahmen die Polystyrol-Tropfen den gleichen Gleichgewichtskontaktwinkel ein, allerdings zeigten Tropfenprofil-Messungen mit dem Rasterkraftmikroskop deutliche Unterschiede in der Art und Weise, wie sich die Tropfen beim Übergang vom kleineren zum größeren Kontaktwinkel in ihre neue Form zusammenziehen.

„Dies konnte nur bedeuten, dass sich die Moleküle in den Tropfen auf den zwei verschiedenen Unterlagen auf unterschiedlichen Wegen bewegen, dass also das Geschwindigkeitsprofil in beiden Tropfen unterschiedlich sein musste“, erläutern Dr. Martin Brinkmann und Dr. Tak Shing Chan aus der Gruppe von Professor Ralf Seemann. „Experimentell ist dies in der benötigten Auflösung allerdings nicht zugänglich. Daher waren wir auf Unterstützung durch unsere theoretisch arbeitenden Kollegen in Paris angewiesen.“

Die Saarbrücker Wissenschaftler vermuteten nämlich, dass die Geschwindigkeit der Flüssigkeit an der festen Oberfläche ein entscheidender Faktor für das Fließverhalten von Flüssigkeiten ist. Diese in ein Modell einzupflegen, gelang den Forscherkollegen am ESPCI in Paris. Aus der theoretischen Beschreibung konnten Martin Brinkmann und Tak Shing Chan anschließend Simulationen erstellen, die das Geschwindigkeitsfeld der Moleküle innerhalb eines Tropfens offenbaren.

„Damit konnten wir zeigen, dass bereits atomar kleine Modifikationen einer festen Oberfläche zu unterschiedlichen Geschwindigkeiten der Moleküle in einem flüssigen System führen können, welches die Dicke der Oberflächenbeschichtung um viele Größenordnungen übertrifft“, fasst Jacobs die Ergebnisse der Experimente zusammen.

Die Forschungsergebnisse können dazu beitragen, industrielle Prozesse zu optimieren, beispielsweise „beim Strangpressen von Polymeren“, sagt Karin Jacobs. Dabei werden Kunststoffe durch Düsen gepresst, ähnlich wie Spätzleteig durch eine Presse; bei beiden Vorgängen wirken hohe Scherkräfte. „Nachdem der Teig die Presse passiert hat, weitet sich der Strang aufgrund der nun geringeren Fließgeschwindigkeit auf“, so Jacobs. „Diese Strangaufweitung ist in der Industrie meist unerwünscht und könnte mit einer geeigneten Düsenbeschichtung unterdrückt werden.“

Link zur Veröffentlichung:
http://www.pnas.org/content/early/2016/01/15/1513565113.abstract
doi: 10.1073/pnas.1513565113

Kontakt:
Prof. Dr. Karin Jacobs
Universität des Saarlandes
Experimentalphysik
Tel.: 0681 302-717 88
E-Mail: k.jacobs@physik.uni-saarland.de
http://www.uni-saarland.de/jacobs

Gerhild Sieber | Universität des Saarlandes

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Ultrakalte chemische Prozesse: Physikern gelingt beispiellose Vermessung auf Quantenniveau
17.11.2017 | Universität Ulm

nachricht Zwei verdächtigte Sterne unschuldig an mysteriösem Antiteilchen-Überschuss
17.11.2017 | Max-Planck-Institut für Kernphysik

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Ultrakalte chemische Prozesse: Physikern gelingt beispiellose Vermessung auf Quantenniveau

Wissenschaftler um den Ulmer Physikprofessor Johannes Hecker Denschlag haben chemische Prozesse mit einer beispiellosen Auflösung auf Quantenniveau vermessen. Bei ihrer wissenschaftlichen Arbeit kombinierten die Forscher Theorie und Experiment und können so erstmals die Produktzustandsverteilung über alle Quantenzustände hinweg - unmittelbar nach der Molekülbildung - nachvollziehen. Die Forscher haben ihre Erkenntnisse in der renommierten Fachzeitschrift "Science" publiziert. Durch die Ergebnisse wird ein tieferes Verständnis zunehmend komplexer chemischer Reaktionen möglich, das zukünftig genutzt werden kann, um Reaktionsprozesse auf Quantenniveau zu steuern.

Einer deutsch-amerikanischen Forschergruppe ist es gelungen, chemische Prozesse mit einer nie dagewesenen Auflösung auf Quantenniveau zu vermessen. Dadurch...

Im Focus: Leoniden 2017: Sternschnuppen im Anflug?

Gemeinsame Pressemitteilung der Vereinigung der Sternfreunde und des Hauses der Astronomie in Heidelberg

Die Sternschnuppen der Leoniden sind in diesem Jahr gut zu beobachten, da kein Mondlicht stört. Experten sagen für die Nächte vom 16. auf den 17. und vom 17....

Im Focus: «Kosmische Schlange» lässt die Struktur von fernen Galaxien erkennen

Die Entstehung von Sternen in fernen Galaxien ist noch weitgehend unerforscht. Astronomen der Universität Genf konnten nun erstmals ein sechs Milliarden Lichtjahre entferntes Sternensystem genauer beobachten – und damit frühere Simulationen der Universität Zürich stützen. Ein spezieller Effekt ermöglicht mehrfach reflektierte Bilder, die sich wie eine Schlange durch den Kosmos ziehen.

Heute wissen Astronomen ziemlich genau, wie sich Sterne in der jüngsten kosmischen Vergangenheit gebildet haben. Aber gelten diese Gesetzmässigkeiten auch für...

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Pflanzenvielfalt von Wäldern aus der Luft abbilden

Produktivität und Stabilität von Waldökosystemen hängen stark von der funktionalen Vielfalt der Pflanzengemeinschaften ab. UZH-Forschenden gelang es, die Pflanzenvielfalt von Wäldern durch Fernerkundung mit Flugzeugen in verschiedenen Massstäben zu messen und zu kartieren – von einzelnen Bäumen bis hin zu ganzen Artengemeinschaften. Die neue Methode ebnet den Weg, um zukünftig die globale Pflanzendiversität aus der Luft und aus dem All zu überwachen.

Ökologische Studien zeigen, dass die Pflanzenvielfalt zentral ist für das Funktionieren von Ökosys-temen. Wälder mit einer höheren funktionalen Vielfalt –...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Technologievorsprung durch Textiltechnik

17.11.2017 | Veranstaltungen

Roboter für ein gesundes Altern: „European Robotics Week 2017“ an der Frankfurt UAS

17.11.2017 | Veranstaltungen

Börse für Zukunftstechnologien – Leichtbautag Stade bringt Unternehmen branchenübergreifend zusammen

17.11.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Technologievorsprung durch Textiltechnik

17.11.2017 | Veranstaltungsnachrichten

IHP präsentiert sich auf der productronica 2017

17.11.2017 | Messenachrichten

Roboter schafft den Salto rückwärts

17.11.2017 | Innovative Produkte