Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Festkörper-Photonik ermöglicht extrem kurzwellige UV-Strahlung

28.05.2015

Mit ultrakurzen Laserpulsen haben Wissenschaftler aus dem Labor für Attosekundenphysik in dünnen dielektrischen Schichten EUV-Strahlung erzeugt und die zugrunde liegenden Mechanismen untersucht.

Das Jahr 1961, die Erfindung des Lasers lag erst kurz zurück, markierte den Beginn der nichtlinearen Optik und Photonik. Denn erstmals war es Wissenschaftlern gelungen, durch Bestrahlung von Quarz-Kristallen (Siliziumdioxid) mit intensivem Licht aus einem Ruby-Laser Strahlung mit doppelt so hoher Frequenz zu erzeugen, also die ursprüngliche Strahlung vom sichtbaren in den UV-Bereich zu verschieben.


Ultraschnelle Laser treiben die Bewegung von Elektronen in Siliziumdioxid, wodurch EUV-Strahlung erzeugt wird.

Grafik: Christian Hackenberger

Nun hat ein Team um Dr. Eleftherios Goulielmakis, Leiter der Forschungsgruppe Attoelectronics am Max-Planck-Institut für Quantenoptik in Garching, intensive und ultrakurze Laserpulse auf dünne Filme aus eben demselben Material geschossen. Dabei konnten sie die Frequenz des Lasers sogar um das 20fache erhöhen und damit Strahlung im extrem kurzwelligen UV-Bereich (EUV) erzeugen.

Die dabei verwendeten Laserpulse enthielten nur eine einzige Schwingung des Wellenzyklus und erlaubten es den Wissenschaftlern, die Bewegung der Elektronen innerhalb des Festkörpergitters extrem schnell zu steuern. Wenn die Elektronen im periodischen Potential des von Atomen gebildeten Gitters abprallen, geben sie Strahlung ab und wandeln so die mit dem Laserlicht aufgenommene Energie in EUV-Strahlung um.

Da die Bewegungen der Elektronen unter dem Einfluss der kurzen Laserpulse auch die Eigenschaften des Festkörpers widerspiegeln, führen die Untersuchungen der emittierten Strahlung zu einem tieferen Verständnis der Struktur der Festkörper und der in ihnen ablaufenden Prozesse. Darüber hinaus ebnen diese Experimente den Weg zu neuen Festkörper-basierten photonischen Geräten. (Nature, 28. Mai 2015)

Nichtlineare Optik und der große Bereich ihrer Anwendung, beispielweise in der Grundlagenfor-schung, der Lasertechnik, der Telekommunikation und der Medizin, basiert auf der Umwandlung von Licht einer Farbe (bzw. Frequenz) in Licht einer anderen. Solche Prozesse werden durch die Wechselwirkung von intensiver Laserstrahlung mit Materie ausgelöst. Sie erlauben es, laserähnliche Strahlung bei Farben (Frequenzen) zu erzeugen, die nicht direkt zugänglich sind. Damit werden auch ganz neue Anwendungen möglich.

Seit mehr als zwei Jahrzehnten wird Strahlung im EUV- oder sogar Röntgen-Bereich erzeugt, indem die Bewegung von Elektronen in Atomen und Molekülen in der Gasphase mit intensivem Laserlicht gesteuert wird. „In festen Stoffen – und diese bilden die Grundlage für moderne photonische Anwendungen – stellt sich die Situation schwieriger dar“, betont Dr. Goulielmakis.

Denn Festkörper nehmen gewöhnlich Schaden, wenn sie intensiver Strahlung ausgesetzt sind. Und was noch gravie-render ist: die schnell vibrierenden Atome im Festkörper stoßen immer wieder ungeordnet mit den lasergetriebenen Elektronen zusammen. Dies verhindert die Erzeugung kohärenter, laserähnlicher Strahlung.

Diese Hürde konnten die MPQ-Wissenschaftler jetzt umgehen, indem sie extrem kurze Laserpulse mit einer Dauer von weniger als zwei Femtosekunden (die also gerade mal eine Feld-schwingung enthalten) verwendeten. „So kurze Laserpulse kann der Film aushalten, denn innerhalb dieser kurzen Zeitspanne werden die Atome kaum von dem Laserlicht aus der Ruhe gebracht“, sagt Tran Trung Luu, ein Wissenschaftler aus dem Team. „Deshalb gelang es, extrem kurzwellige UV-Strahlung in dem Film zu erzeugen.“

Doch die Wissenschaftler begnügten sich nicht mit diesem Resultat. „Um mehr Informationen über die Struktur des Festkörpers, genauer gesagt, die Energiedispersion im Leitungsband, zu erhalten, untersuchten wir die Charakteristik der emittierten Strahlung im Detail“, erklärt Goulielmakis. „Das war bislang mit herkömmlicher Festkörperspektroskopie nicht möglich.“ Unter dem Einfluss der op-tischen Felder gelangen die Elektronen vom Valenz- ins Leitungsband, in dem sie vom Laserfeld beschleunigt werden. „Bei ihrer Bewegung durch den Kristall spüren die Elektronen die sie umge-bende Struktur, und diese Information ist in der emittierten Strahlung enthalten”, führt Manish Garg aus, ein Wissenschaftler im Team.

Aber wie schnell schwingen die Elektronen, um die EUV-Strahlung zu erzeugen? Dies erschließt die Frequenz der ausgesandten Strahlung, wenn man geeignete theoretische Modelle verwendet. „Wir haben starke Anzeichen dafür, dass die Laserpulse die Elektronen zwingen, in dem periodischen Kristallpotential extrem schnelle Schwingungen von mehreren 10 Petahertz (1015 Hz) auszuführen“, erklärt Goulielmakis.

„Es handelt sich dabei um die schnellsten jemals in einem Festkörper erzeugten elektrischen Ströme, und die Untersuchung der ausgesandten Strahlung erlaubt es uns, in die Dynamik dieser extrem schnellen Bewegung hinein zu blicken.“ Indem sie die Form und Dauer der Lichtpulse variierten, konnten die Wissenschaftler darüber hinaus diese ultraschnellen elektrischen Ströme gezielt beeinflussen. „Unsere Arbeit zeigt neue Wege auf, lichtbasierte Elektro-nik bei Multi-Petahertz-Frequenzen zu realisieren“, fasst der Gruppenleiter zusammen. [EG/OM]

Originalveröffentlichung:
T. T. Luu, M. Garg, S. Yu. Kruchinin, A. Moulet, M. Th. Hassan and E. Goulielmakis
Extreme Ultraviolet High-Harmonic Spectroscopy of Solids
Nature, 28 May, 2015, DOI: 10.1038/nature14456

Kontakt:
Dr. Eleftherios Goulielmakis
ERC Forschungsgruppe Attoelectronics
Max-Planck-Institut für Quantenoptik
Labor für Attosekundenphysik
Hans-Kopfermann-Str. 1, 85748 Garching
Telefon: +49 (0)89 / 32 905 -632 /Fax: -200
E-Mail: Eleftherios.Goulielmakis@mpq.mpg.de
www.attoworld.de/goulielmakis-group

Dr. Olivia Meyer-Streng
Presse- und Öffentlichkeitsarbeit
Max-Planck-Institut für Quantenoptik
Hans-Kopfermann-Straße 1, 85748 Garching
Telefon: +49 (0)89 / 32 905 -213
E-Mail: olivia.meyer-streng@mpq.mpg.de

Dr. Olivia Meyer-Streng | Max-Planck-Institut für Quantenoptik
Weitere Informationen:
http://www.mpq.mpg.de/

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Highlight der Halbleiter-Forschung
20.02.2018 | Technische Universität Chemnitz

nachricht Beobachtung und Kontrolle ultraschneller Prozesse mit Attosekunden-Auflösung
20.02.2018 | Technische Universität München

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Innovation im Leichtbaubereich: Belastbares Sandwich aus Aramid und Carbon

Die Entwicklung von Leichtbaustrukturen ist eines der zentralen Zukunftsthemen unserer Gesellschaft. Besonders in der Luftfahrtindustrie und in anderen Transportbereichen sind Leichtbaustrukturen gefragt. Sie ermöglichen Energieeinsparungen und reduzieren den Ressourcenverbrauch bei Treibstoffen und Material. Zum Einsatz kommen dabei Verbundmaterialien in der so genannten Sandwich-Bauweise. Diese bestehen aus zwei dünnen, steifen und hochfesten Deckschichten mit einer dazwischen liegenden dicken, vergleichsweise leichten und weichen Mittelschicht, dem Sandwich-Kern.

Aramidpapier ist ein etabliertes Material für solche Sandwichkerne. Sein mechanisches Strukturversagen ist jedoch noch unzureichend erforscht: Bislang fehlten...

Im Focus: Die Brücke, die sich dehnen kann

Brücken verformen sich, daher baut man normalerweise Dehnfugen ein. An der TU Wien wurde eine Technik entwickelt, die ohne Fugen auskommt und dadurch viel Geld und Aufwand spart.

Wer im Auto mit flottem Tempo über eine Brücke fährt, spürt es sofort: Meist rumpelt man am Anfang und am Ende der Brücke über eine Dehnfuge, die dort...

Im Focus: Eine Frage der Dynamik

Die meisten Ionenkanäle lassen nur eine ganz bestimmte Sorte von Ionen passieren, zum Beispiel Natrium- oder Kaliumionen. Daneben gibt es jedoch eine Reihe von Kanälen, die für beide Ionensorten durchlässig sind. Wie den Eiweißmolekülen das gelingt, hat jetzt ein Team um die Wissenschaftlerin Han Sun (FMP) und die Arbeitsgruppe von Adam Lange (FMP) herausgefunden. Solche nicht-selektiven Kanäle besäßen anders als die selektiven eine dynamische Struktur ihres Selektivitätsfilters, berichten die FMP-Forscher im Fachblatt Nature Communications. Dieser Filter könne zwei unterschiedliche Formen ausbilden, die jeweils nur eine der beiden Ionensorten passieren lassen.

Ionenkanäle sind für den Organismus von herausragender Bedeutung. Wenn zum Beispiel Sinnesreize wahrgenommen, ans Gehirn weitergeleitet und dort verarbeitet...

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Erste integrierte Schaltkreise (IC) aus Plastik

Erstmals ist es einem Forscherteam am Max-Planck-Institut (MPI) für Polymerforschung in Mainz gelungen, einen integrierten Schaltkreis (IC) aus einer monomolekularen Schicht eines Halbleiterpolymers herzustellen. Dies erfolgte in einem sogenannten Bottom-Up-Ansatz durch einen selbstanordnenden Aufbau.

In diesem selbstanordnenden Aufbauprozess ordnen sich die Halbleiterpolymere als geordnete monomolekulare Schicht in einem Transistor an. Transistoren sind...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

DFG unterstützt Kongresse und Tagungen - April 2018

21.02.2018 | Veranstaltungen

Tag der Seltenen Erkrankungen – Deutsche Leberstiftung informiert über seltene Lebererkrankungen

21.02.2018 | Veranstaltungen

Digitalisierung auf dem Prüfstand: Hochkarätige Konferenz zu Empowerment in der agilen Arbeitswelt

20.02.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Kameratechnologie in Fahrzeugen: Bilddaten latenzarm komprimiert

21.02.2018 | Messenachrichten

Mit grüner Chemie gegen Malaria

21.02.2018 | Biowissenschaften Chemie

Periimplantitis: BMBF fördert zahnärztliches Verbund-Projekt mit 1,1 Millionen Euro

21.02.2018 | Förderungen Preise

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics