Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Ein Fenster ins Innere von Graphen

11.11.2013
Physiker der Universität Jena charakterisieren im renommierten Fachmagazin „Nature Materials“ die elektronischen Eigenschaften eines Zukunftsmaterials

Robuster als Diamant, dichter als Glas, leitfähiger als Kupfer – Wenn Physiker und Materialforscher von Graphen sprechen, kommen sie leicht ins Schwärmen.

Denn das bienenwabenförmige Material aus einer einzelnen Atomlage Kohlenstoff ist für eine Vielzahl potenzieller Anwendungen interessant. „Aufgrund seiner einzigartigen Struktur ist Graphen nicht nur als elektrischer Leiter hervorragend geeignet.

Es kann auch als Beschichtung für Verpackungen und Schutzhüllen, als Lasermedium oder in Detektoren eingesetzt werden“, sagt Prof. Dr. Alexander Szameit von der Friedrich-Schiller-Universität Jena.

Entscheidend für den praktischen Einsatz sei es, die elektronischen Eigenschaften des außergewöhnlichen Materials präzise bestimmen und auch gestalten zu können, so der Juniorprofessor für Diamant-/Kohlenstoffbasierte optische Systeme. Und das galt bislang als äußert knifflig.

Doch den Physikern der Uni Jena um Prof. Szameit und Prof. Dr. Stefan Nolte ist es jetzt mit einem internationalen Team gelungen, das Verhalten von Elektronen in dem Zukunftsmaterial umfassend zu charakterisieren. In der aktuellen Ausgabe des renommierten Fachmagazins „Nature Materials“ stellen die Forscher experimentelle Daten vor, anhand derer sich die elektronischen Eigenschaften insbesondere in den Randstrukturen des Graphen-Kristalls exakt simulieren lassen (DOI:10.1038/NMAT3783). Die Beschaffenheit der Randbereiche ist dabei entscheidend für die elektronischen Eigenschaften des gesamten Kristalls.

„Wir nutzen für unsere Experimente ein photonisches Modell des Graphen“, sagt Prof. Nolte. Dafür haben die Jenaer Physiker per Laser einige Hundert winzige Lichtleiter in einen Glas-Chip graviert, die wie im Graphen in einem Bienenwabenmuster angeordnet sind und so die einlagige Kristallstruktur simulieren.

„Wird Licht in das Modell eingestrahlt, so verteilen sich die Lichtteilchen, die Photonen, über den gesamten Kristall – so wie die extrem beweglichen Elektronen im echten Graphen für seine enorme elektrische Leitfähigkeit sorgen“, erläutert der Professor für Experimental- und Laserphysik. Dieses Modell sei wie ein Fenster, durch das man ins Innere des faszinierenden Kristalls sehen könne.

Auf diese Weise haben die Forscher der Uni Jena, der San Francisco State University und des Technion – Israel Institute of Technology in Haifa das Verhalten von Photonen in den Randbereichen des Modell-Kristalls untersuchen können. „Aufgrund der sechseckigen Grundstruktur des Graphen-Kristalls können die Ränder unterschiedliche Formen annehmen“, weiß Prof. Szameit. Diese bilden – wie die Fransen um einen Teppich – entweder ein Zickzackmuster, eine „Bart-“ oder „Armlehnenform“.

„Unter bestimmten experimentellen Bedingungen können sich die Elektronen nur entlang dieser Randbereiche und nicht ins Innere des Kristalls bewegen“, so der Jenaer Physiker weiter. Ob jedoch solche sogenannten „Oberflächenzustände“ entstehen, hänge entscheidend von der jeweiligen Form der Randstruktur ab. Die Existenz solcher Zustände ist jedoch ein wichtiges Mittel, um die Leitfähigkeit von Graphen kontrollieren zu können.

In der aktuellen Publikation weisen die Forscher jetzt erstmals überhaupt Oberflächenzustände bei bartförmigen Randstrukturen nach. „Diese sind zwar theoretisch vorhergesagt worden, konnten aber bislang experimentell nicht untersucht werden, weil echtes Graphen mit bartförmigen Rändern zu instabil ist“, so Szameit. Anhand des stabilen photonischen Modells war das aber problemlos möglich. Zudem ist es dem Forscherteam gelungen, einen bislang gänzlich unbekannten Oberflächenzustand nachzuweisen.

„Das bedeutet, dass die bisherige theoretische Beschreibung der Elektronenbewegung entlang der Ränder des Graphen-Kristalls unvollständig war und wir diese Lücke jetzt schließen konnten“, resümiert Szameit. Er ist sicher, dass sich mit den Erkenntnissen, die man aus diesen Experimenten gewinnt, neue Möglichkeiten für graphen-basierte Anwendungen erschließen lassen – und damit dem „Zukunftsmaterial“ Graphen weiter Schub verleiht.

Original-Publikation:
Plotnik Y et al. Observation of Tamm-like edge states in ‘photonic graphene‘, Nature Materials 2013, DOI:10.1038/nmat3783
Kontakt:
Prof. Dr. Alexander Szameit
Institut für Angewandte Physik der Friedrich-Schiller-Universität Jena
Albert-Einstein-Straße 15, 07745 Jena
Tel.: 03641 / 947985
E-Mail: alexander.szameit[at]uni-jena.de

Dr. Ute Schönfelder | Friedrich-Schiller-Universität J
Weitere Informationen:
http://www.uni-jena.de

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Sterngeburt in den Winden supermassereicher Schwarzer Löcher
28.03.2017 | ESO Science Outreach Network - Haus der Astronomie

nachricht Das anwachsende Ende der Ordnung
27.03.2017 | Universität Konstanz

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Entwicklung miniaturisierter Lichtmikroskope - „ChipScope“ will ins Innere lebender Zellen blicken

Das Institut für Halbleitertechnik und das Institut für Physikalische und Theoretische Chemie, beide Mitglieder des Laboratory for Emerging Nanometrology (LENA), der Technischen Universität Braunschweig, sind Partner des kürzlich gestarteten EU-Forschungsprojektes ChipScope. Ziel ist es, ein neues, extrem kleines Lichtmikroskop zu entwickeln. Damit soll das Innere lebender Zellen in Echtzeit beobachtet werden können. Sieben Institute in fünf europäischen Ländern beteiligen sich über die nächsten vier Jahre an diesem technologisch anspruchsvollen Projekt.

Die zukünftigen Einsatzmöglichkeiten des neu zu entwickelnden und nur wenige Millimeter großen Mikroskops sind äußerst vielfältig. Die Projektpartner haben...

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Das anwachsende Ende der Ordnung

Physiker aus Konstanz weisen sogenannte Mermin-Wagner-Fluktuationen experimentell nach

Ein Kristall besteht aus perfekt angeordneten Teilchen, aus einer lückenlos symmetrischen Atomstruktur – dies besagt die klassische Definition aus der Physik....

Im Focus: Wegweisende Erkenntnisse für die Biomedizin: NAD⁺ hilft bei Reparatur geschädigter Erbinformationen

Eine internationale Forschergruppe mit dem Bayreuther Biochemiker Prof. Dr. Clemens Steegborn präsentiert in 'Science' neue, für die Biomedizin wegweisende Forschungsergebnisse zur Rolle des Moleküls NAD⁺ bei der Korrektur von Schäden am Erbgut.

Die Zellen von Menschen und Tieren können Schäden an der DNA, dem Träger der Erbinformation, bis zu einem gewissen Umfang selbst reparieren. Diese Fähigkeit...

Im Focus: Designer-Proteine falten DNA

Florian Praetorius und Prof. Hendrik Dietz von der Technischen Universität München (TUM) haben eine neue Methode entwickelt, mit deren Hilfe sie definierte Hybrid-Strukturen aus DNA und Proteinen aufbauen können. Die Methode eröffnet Möglichkeiten für die zellbiologische Grundlagenforschung und für die Anwendung in Medizin und Biotechnologie.

Desoxyribonukleinsäure – besser bekannt unter der englischen Abkürzung DNA – ist die Trägerin unserer Erbinformation. Für Prof. Hendrik Dietz und Florian...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Industriearbeitskreis »Prozesskontrolle in der Lasermaterialbearbeitung ICPC« lädt nach Aachen ein

28.03.2017 | Veranstaltungen

Neue Methoden für zuverlässige Mikroelektronik: Internationale Experten treffen sich in Halle

28.03.2017 | Veranstaltungen

Wie Menschen wachsen

27.03.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Hannover Messe: Elektrische Maschinen in neuen Dimensionen

28.03.2017 | HANNOVER MESSE

Dimethylfumarat – eine neue Behandlungsoption für Lymphome

28.03.2017 | Medizin Gesundheit

Antibiotikaresistenz zeigt sich durch Leuchten

28.03.2017 | Biowissenschaften Chemie