Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Ein Fenster ins Innere von Graphen

11.11.2013
Physiker der Universität Jena charakterisieren im renommierten Fachmagazin „Nature Materials“ die elektronischen Eigenschaften eines Zukunftsmaterials

Robuster als Diamant, dichter als Glas, leitfähiger als Kupfer – Wenn Physiker und Materialforscher von Graphen sprechen, kommen sie leicht ins Schwärmen.

Denn das bienenwabenförmige Material aus einer einzelnen Atomlage Kohlenstoff ist für eine Vielzahl potenzieller Anwendungen interessant. „Aufgrund seiner einzigartigen Struktur ist Graphen nicht nur als elektrischer Leiter hervorragend geeignet.

Es kann auch als Beschichtung für Verpackungen und Schutzhüllen, als Lasermedium oder in Detektoren eingesetzt werden“, sagt Prof. Dr. Alexander Szameit von der Friedrich-Schiller-Universität Jena.

Entscheidend für den praktischen Einsatz sei es, die elektronischen Eigenschaften des außergewöhnlichen Materials präzise bestimmen und auch gestalten zu können, so der Juniorprofessor für Diamant-/Kohlenstoffbasierte optische Systeme. Und das galt bislang als äußert knifflig.

Doch den Physikern der Uni Jena um Prof. Szameit und Prof. Dr. Stefan Nolte ist es jetzt mit einem internationalen Team gelungen, das Verhalten von Elektronen in dem Zukunftsmaterial umfassend zu charakterisieren. In der aktuellen Ausgabe des renommierten Fachmagazins „Nature Materials“ stellen die Forscher experimentelle Daten vor, anhand derer sich die elektronischen Eigenschaften insbesondere in den Randstrukturen des Graphen-Kristalls exakt simulieren lassen (DOI:10.1038/NMAT3783). Die Beschaffenheit der Randbereiche ist dabei entscheidend für die elektronischen Eigenschaften des gesamten Kristalls.

„Wir nutzen für unsere Experimente ein photonisches Modell des Graphen“, sagt Prof. Nolte. Dafür haben die Jenaer Physiker per Laser einige Hundert winzige Lichtleiter in einen Glas-Chip graviert, die wie im Graphen in einem Bienenwabenmuster angeordnet sind und so die einlagige Kristallstruktur simulieren.

„Wird Licht in das Modell eingestrahlt, so verteilen sich die Lichtteilchen, die Photonen, über den gesamten Kristall – so wie die extrem beweglichen Elektronen im echten Graphen für seine enorme elektrische Leitfähigkeit sorgen“, erläutert der Professor für Experimental- und Laserphysik. Dieses Modell sei wie ein Fenster, durch das man ins Innere des faszinierenden Kristalls sehen könne.

Auf diese Weise haben die Forscher der Uni Jena, der San Francisco State University und des Technion – Israel Institute of Technology in Haifa das Verhalten von Photonen in den Randbereichen des Modell-Kristalls untersuchen können. „Aufgrund der sechseckigen Grundstruktur des Graphen-Kristalls können die Ränder unterschiedliche Formen annehmen“, weiß Prof. Szameit. Diese bilden – wie die Fransen um einen Teppich – entweder ein Zickzackmuster, eine „Bart-“ oder „Armlehnenform“.

„Unter bestimmten experimentellen Bedingungen können sich die Elektronen nur entlang dieser Randbereiche und nicht ins Innere des Kristalls bewegen“, so der Jenaer Physiker weiter. Ob jedoch solche sogenannten „Oberflächenzustände“ entstehen, hänge entscheidend von der jeweiligen Form der Randstruktur ab. Die Existenz solcher Zustände ist jedoch ein wichtiges Mittel, um die Leitfähigkeit von Graphen kontrollieren zu können.

In der aktuellen Publikation weisen die Forscher jetzt erstmals überhaupt Oberflächenzustände bei bartförmigen Randstrukturen nach. „Diese sind zwar theoretisch vorhergesagt worden, konnten aber bislang experimentell nicht untersucht werden, weil echtes Graphen mit bartförmigen Rändern zu instabil ist“, so Szameit. Anhand des stabilen photonischen Modells war das aber problemlos möglich. Zudem ist es dem Forscherteam gelungen, einen bislang gänzlich unbekannten Oberflächenzustand nachzuweisen.

„Das bedeutet, dass die bisherige theoretische Beschreibung der Elektronenbewegung entlang der Ränder des Graphen-Kristalls unvollständig war und wir diese Lücke jetzt schließen konnten“, resümiert Szameit. Er ist sicher, dass sich mit den Erkenntnissen, die man aus diesen Experimenten gewinnt, neue Möglichkeiten für graphen-basierte Anwendungen erschließen lassen – und damit dem „Zukunftsmaterial“ Graphen weiter Schub verleiht.

Original-Publikation:
Plotnik Y et al. Observation of Tamm-like edge states in ‘photonic graphene‘, Nature Materials 2013, DOI:10.1038/nmat3783
Kontakt:
Prof. Dr. Alexander Szameit
Institut für Angewandte Physik der Friedrich-Schiller-Universität Jena
Albert-Einstein-Straße 15, 07745 Jena
Tel.: 03641 / 947985
E-Mail: alexander.szameit[at]uni-jena.de

Dr. Ute Schönfelder | Friedrich-Schiller-Universität J
Weitere Informationen:
http://www.uni-jena.de

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Berner Mars-Kamera liefert erste farbige Bilder vom Mars
26.04.2018 | Universität Bern

nachricht Belle II misst die ersten Teilchenkollisionen
26.04.2018 | Max-Planck-Institut für Physik

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Why we need erasable MRI scans

New technology could allow an MRI contrast agent to 'blink off,' helping doctors diagnose disease

Magnetic resonance imaging, or MRI, is a widely used medical tool for taking pictures of the insides of our body. One way to make MRI scans easier to read is...

Im Focus: Fraunhofer ISE und teamtechnik bringen leitfähiges Kleben für Siliciumsolarzellen zu Industriereife

Das Kleben der Zellverbinder von Hocheffizienz-Solarzellen im industriellen Maßstab ist laut dem Fraunhofer-Institut für Solare Energiesysteme ISE und dem Anlagenhersteller teamtechnik marktreif. Als Ergebnis des gemeinsamen Forschungsprojekts »KleVer« ist die Klebetechnologie inzwischen so weit ausgereift, dass sie als alternative Verschaltungstechnologie zum weit verbreiteten Weichlöten angewendet werden kann. Durch die im Vergleich zum Löten wesentlich niedrigeren Prozesstemperaturen können vor allem temperatursensitive Hocheffizienzzellen schonend und materialsparend verschaltet werden.

Dabei ist der Durchsatz in der industriellen Produktion nur geringfügig niedriger als beim Verlöten der Zellen. Die Zuverlässigkeit der Klebeverbindung wurde...

Im Focus: BAM@Hannover Messe: Innovatives 3D-Druckverfahren für die Raumfahrt

Auf der Hannover Messe 2018 präsentiert die Bundesanstalt für Materialforschung und -prüfung (BAM), wie Astronauten in Zukunft Werkzeug oder Ersatzteile per 3D-Druck in der Schwerelosigkeit selbst herstellen können. So können Gewicht und damit auch Transportkosten für Weltraummissionen deutlich reduziert werden. Besucherinnen und Besucher können das innovative additive Fertigungsverfahren auf der Messe live erleben.

Pulverbasierte additive Fertigung unter Schwerelosigkeit heißt das Projekt, bei dem ein Bauteil durch Aufbringen von Pulverschichten und selektivem...

Im Focus: BAM@Hannover Messe: innovative 3D printing method for space flight

At the Hannover Messe 2018, the Bundesanstalt für Materialforschung und-prüfung (BAM) will show how, in the future, astronauts could produce their own tools or spare parts in zero gravity using 3D printing. This will reduce, weight and transport costs for space missions. Visitors can experience the innovative additive manufacturing process live at the fair.

Powder-based additive manufacturing in zero gravity is the name of the project in which a component is produced by applying metallic powder layers and then...

Im Focus: IWS-Ingenieure formen moderne Alu-Bauteile für zukünftige Flugzeuge

Mit Unterdruck zum Leichtbau-Flugzeug

Ingenieure des Fraunhofer-Instituts für Werkstoff- und Strahltechnik (IWS) in Dresden haben in Kooperation mit Industriepartnern ein innovatives Verfahren...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Konferenz »Encoding Cultures. Leben mit intelligenten Maschinen« | 27. & 28.04.2018 ZKM | Karlsruhe

26.04.2018 | Veranstaltungen

Konferenz zur Marktentwicklung von Gigabitnetzen in Deutschland

26.04.2018 | Veranstaltungen

infernum-Tag 2018: Digitalisierung und Nachhaltigkeit

24.04.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Weltrekord an der Uni Paderborn: Optische Datenübertragung mit 128 Gigabits pro Sekunde

26.04.2018 | Informationstechnologie

Multifunktionaler Mikroschwimmer transportiert Fracht und zerstört sich selbst

26.04.2018 | Biowissenschaften Chemie

Berner Mars-Kamera liefert erste farbige Bilder vom Mars

26.04.2018 | Physik Astronomie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics