Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Femtosekundenlaser erbringt eine bislang nicht erreichte mittlere Ausgangsleistung von 1,1 kW

15.12.2010
Forscher des Fraunhofer-Instituts für Lasertechnik ILT haben ein Verstärker-Konzept für Femtosekundenlaser (fs-Laser) weiterentwickelt. Dadurch ist es erstmals möglich, eine mittlere Leistung im Kilowatt-Bereich zu erzielen. Die kurzen Pulse der fs-Laser erlauben eine ultrapräzise Materialbearbeitung. Dank der hohen mittleren Leistung kann nun auch der Durchsatz in der Produktion signifikant gesteigert werden.

Während Laser mit kontinuierlicher Strahlung (cw) häufig im Bereich Schneiden und Schweißen zum Einsatz kommen, werden gepulste Laser meist zum Abtragen eingesetzt. Dabei gilt: je kürzer die Pulse, desto kleiner die Wärmeeindringtiefe, desto höher die Temperatur an der Materialoberfläche und desto höher die Präzision der Materialbearbeitung.

Das Material wird überwiegend durch Verdampfen abgetragen. Die kürzeren Pulse der fs-Laser erlauben eine größere Präzision beim Abtragen. Außerdem können Materialien bearbeitet werden, die sich sonst nur schlecht oder gar nicht mit dem Laser bearbeiten lassen.

Allerdings hat sich der fs-Laser noch nicht in der industriellen Produktion etabliert. Dies könnte sich durch die Verfügbarkeit von fs-Lasern mit großer mittlerer Leistung und somit mehr Durchsatz, geringem Wartungsaufwand und leichter Bedienbarkeit künftig ändern. Forschern des Fraunhofer ILT ist es nun gelungen, mit einem fs-Laser erstmals eine mittlere Leistung im kW-Bereich zu erzielen. Ein erster Schritt, um die industrielle Nutzung von fs-Lasern deutlich zu erweitern.

Erweitertes Verstärker-Konzept

Das Verstärker-Konzept basiert auf der INNOSLAB-Technologie. Diese Eigen-Entwicklung des Fraunhofer ILT zeichnet sich durch einen besonders simplen, robusten und kompakten Aufbau aus. Die Aachener Forscher haben das Verstärker-Konzept auf Yb-dotiertes YAG als aktives Medium erweitert, das aufgrund der großen Bandbreite die Verstärkung ultrakurzer Pulse erlaubt. Da Ytterbium-dotierte Kristalle hohe Anforderungen an die Pump-Strahlquelle stellen, wurde dieser Schritt erst durch die Verfügbarkeit einer neuen Generation brillanter Hochleistungs-Laserdioden möglich. Das Oszillator-Verstärker-System erlaubt eine hohe Flexibilität hinsichtlich Pulsrepetitionsrate und Pulsdauer, da zur Erzeugung der Pulse ein Vielzahl kommerzieller fs-Oszillatoren auf der Basis von Faser- und Festkörperlasern mit etwa 2 W mittlerer Laserleistung zur Verfügung stehen.

Dr. Peter Rußbüldt, Projektleiter am Fraunhofer ILT, hat nun zwei INNOSLAB-Verstärker hintereinander geschaltet. Die Verstärkerkette konnte so bei einer Pulsspitzenleistung von 80 MW und einer Pulsdauer von 600 Femtosekunden eine mittlere Leistung von 1,1 kW erbringen. Damit stellen die Aachener Forscher einen neuen Rekord auf.

Ursprünglicher Zweck des BMBF-geförderten Gemeinschaftsprojekts mit dem Max-Planck-Institut für Quantenoptik ist eine wissenschaftliche Anwendung: die Erzeugung kohärenter EUV-Strahlung. Im Laufe des Projekts wurde der Laser am Fraunhofer ILT weiterentwickelt. »Durch seine neue Leistung entfernt sich der fs-Laser vom Image des wissenschaftlich komplizierten Spielzeugs«, so Dr. Rußbüldt. »Mit der höheren Leistung steigt auch der Durchsatz in der Produktion. Dies bedeutet einen enormen Zeit- und Kostenvorteil für Hersteller. Somit kann der fs-Laser nun auch in Bereichen eingesetzt werden, in denen sein Durchsatz wirtschaftlich bislang nicht ausreichte.« Typische Anwendungen des fs-Lasers im Makrobereich sind Fertigungsverfahren für Leichtbaukomponenten auf der Basis von Faserverbundwerkstoffen. Denn mit einem fs-Laser lassen sich unterschiedlichste Materialien bearbeiten, ungeachtet ihrer Eigenschaften. Im Mikrobereich reichen die Anwendungen dieser neuen Strahlquelle vom Bohren von Düsen über die Werkzeugtechnik, die Solarzellentechnik bis hin zur Drucktechnik.

Das Fraunhofer ILT veranstaltet zu dieser Thematik am 13. und 14. April 2011 in Aachen einen Workshop. Experten aus Wissenschaft und Industrie informieren über Grundlagen und Laserstrahlquellen der Ultrakurzpulslaser (UKP) und diskutieren gemeinsam mit den Teilnehmern über die Einsatzmöglichkeiten in der Materialbearbeitung. Auch technologische Entwicklungen und deren Marktpotenzial werden in diesem UKP-Workshop beleuchtet.

Auf der SPIE Photonics West (San Francisco, USA, 25. - 27. 01. 2011) zeigt das Fraunhofer ILT im German Pavillion North Hall auf Stand 4601 hochpräzise Montagetechniken für optische Komponenten und präsentiert weitere Entwicklungen von Wärmesenken von Hochleistungsdiodenlasern. In der begleitenden Konferenz LASE (22. - 27. 01. 2011) stellen Aachener Experten dem Fachpublikum den neuen Hochleistungslaser vor.

Ansprechpartner im Fraunhofer ILT
Für Fragen stehen Ihnen unsere Experten zur Verfügung:
Dr. rer. nat. Peter Rußbüldt
Ultrakurzpulslaser
Telefon +49 241 8906-303
peter.russbueldt@ilt.fraunhofer.de
Dipl.-Ing. Hans-Dieter Hoffmann
Laser und Optik
Telefon +49 241 8906-206
hansdieter.hoffmann@ilt.fraunhofer.de
Information und Anmeldung zum UKP-Workshop
Dr.-Ing. Jens Holtkamp
Mikro- und Nanostrukturierung
Telefon +49 241 8906-273
jens.holtkamp@ilt.fraunhofer.de
Fraunhofer-Institut für Lasertechnik ILT
Steinbachstraße 15
52074 Aachen
Tel. +49 241 8906-0
Fax. +49 241 8906-121

Axel Bauer | Fraunhofer-Institut
Weitere Informationen:
http://www.ilt.fraunhofer.de

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Neuartige Halbleiter-Membran-Laser
22.03.2017 | Universität Stuttgart

nachricht Seltene Erden: Wasserabweisend erst durch Altern
22.03.2017 | Universität Basel

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Gigantische Magnetfelder im Universum

Astronomen aus Bonn und Tautenburg in Thüringen beobachteten mit dem 100-m-Radioteleskop Effelsberg Galaxienhaufen, das sind Ansammlungen von Sternsystemen, heißem Gas und geladenen Teilchen. An den Rändern dieser Galaxienhaufen fanden sie außergewöhnlich geordnete Magnetfelder, die sich über viele Millionen Lichtjahre erstrecken. Sie stellen die größten bekannten Magnetfelder im Universum dar.

Die Ergebnisse werden am 22. März in der Fachzeitschrift „Astronomy & Astrophysics“ veröffentlicht.

Galaxienhaufen sind die größten gravitativ gebundenen Strukturen im Universum, mit einer Ausdehnung von etwa zehn Millionen Lichtjahren. Im Vergleich dazu ist...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Auf der Spur des linearen Ubiquitins

Eine neue Methode ermöglicht es, den Geheimcode linearer Ubiquitin-Ketten zu entschlüsseln. Forscher der Goethe-Universität berichten darüber in der aktuellen Ausgabe von "nature methods", zusammen mit Partnern der Universität Tübingen, der Queen Mary University und des Francis Crick Institute in London.

Ubiquitin ist ein kleines Molekül, das im Körper an andere Proteine angehängt wird und so deren Funktion kontrollieren und verändern kann. Die Anheftung...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Physiker erzeugen gezielt Elektronenwirbel

Einem Team um den Oldenburger Experimentalphysiker Prof. Dr. Matthias Wollenhaupt ist es mithilfe ultrakurzer Laserpulse gelungen, gezielt Elektronenwirbel zu erzeugen und diese dreidimensional abzubilden. Damit haben sie einen komplexen physikalischen Vorgang steuern können: die sogenannte Photoionisation oder Ladungstrennung. Diese gilt als entscheidender Schritt bei der Umwandlung von Licht in elektrischen Strom, beispielsweise in Solarzellen. Die Ergebnisse ihrer experimentellen Arbeit haben die Grundlagenforscher kürzlich in der renommierten Fachzeitschrift „Physical Review Letters“ veröffentlicht.

Das Umwandeln von Licht in elektrischen Strom ist ein ultraschneller Vorgang, dessen Details erstmals Albert Einstein in seinen Studien zum photoelektrischen...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Die „Panama Papers“ aus Programmierersicht

22.03.2017 | Veranstaltungen

Über Raum, Zeit und Materie

22.03.2017 | Veranstaltungen

Unter der Haut

22.03.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Die „Panama Papers“ aus Programmierersicht

22.03.2017 | Veranstaltungsnachrichten

Neues Schiff für die Fischerei- und Meeresforschung

22.03.2017 | Biowissenschaften Chemie

Mit voller Kraft auf Erregerjagd

22.03.2017 | Biowissenschaften Chemie