Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Feinstes Gespür für Moleküle

22.09.2015

Wissenschaftler des Max-Planck-Instituts für Quantenoptik und der Ludwig-Maximilians Universität München haben in Kooperation mit dem Institute of Photonic Sciences in Barcelona einen Infrarot-Laser entwickelt, der mit einer hohen Empfindlichkeit Moleküle aufspüren kann.

Wenn es um das Aufspüren einzelner Moleküle geht, ist Infrarotlicht ein hervorragender Helfer. Denn Moleküle reagieren auf das, für uns unsichtbare, Licht sehr individuell. Besonders effektiv auf der Suche nach Molekülen mit Infrarotlicht ist der Einsatz einer ausgefeilten Lasertechnik.


Der an der LMU gerade in Betrieb genommene Kurzpulslaser sendet pro Sekunde 100 Millionen Infrarot-Lichtimpulse aus. Sie können zur Detektion von Molekülen in Gasen und Flüssigkeiten eingesetzt werden

Thorsten Naeser

Diese haben nun Wissenschaftler des Labors für Attosekundenphysik (LAP) am Max-Planck-Institut für Quantenoptik (MPQ) und der Ludwig-Maximilians-Universität (LMU) in Kooperation mit dem Institute of Photonic Sciences (ICFO) in Barcelona, Spanien in eine weltweit einzigartige Lichtquelle gepackt.

Der neu entwickelte Kurzpulslaser verfügt über eine extreme Leistungsfähigkeit seiner Lichtblitze. Mit ihrer Hilfe können einzelne Moleküle unter Milliarden anderer erkannt werden. Mit dem Laser wollen die Forscher auf die Suche nach molekularen Krankheitsindikatoren in der Atemluft gehen.

Lange kennt man sie noch nicht. Erst um das Jahr 1800 war klar, dass es, jenseits des sichtbaren Lichts, noch eine weitere Art der Strahlung gibt, die die Sonne auf die Erde schickt. Damals war es der deutsch-britische Astronom Wilhelm Herschel, der über Versuche mit Prismen und einem Thermometer entdeckte, dass es die Infrarot-Strahlung gibt. Heute nützt der Mensch die Infrarotstrahlung u.a. zur Erforschung des Mikrokosmos.

LAP-Wissenschaftler haben jetzt in Kooperation mit dem Institute of Photonic Sciences (ICFO) in Barcelona einen Laser entwickelt, der ihnen eine enorme Kontrolle über mittleres, infrarotes Licht verschafft. Der Laser ist eine weltweit einzigartige Quelle für ultrakurze Pulse, denn er verbindet gleich mehrere Eigenschaften einer Lichtquelle miteinander.

Das ausgesendete Licht ist extrem brillant. Das heißt: es werden sehr viele Photonen mit gleicher Wellenlänge in einen einzelnen Impuls verpackt. Dabei deckt das Licht nahezu das gesamte Spektrum des Mittleren Infrarot ab und reicht von 6,8 bis 18 Mikrometer Wellenlänge.

Die Wellen sind zeitlich und räumlich kohärent. Das heißt, sie werden in regelmäßigen Abständen ausgesendet. Jeder Laserimpuls dauert rund 66 Femtosekunden (eine Femtosekunde ist ein Millionstel einer Milliardstel Sekunde), in dieser Zeit führt das Licht zwei ganze Lichtschwingungen aus. Die Impulse wiederholen sich 100 Millionen Mal pro Sekunde.

Mit diesen Eigenschaften wird der Laser zu einem Suchgerät, mit dessen Hilfe man Moleküle in Flüssigkeiten oder Gasen aufspüren kann. Denn Moleküle reagieren vor allem auf mittleres infrarotes Licht sehr empfindlich. Trifft die Strahlung auf die Teilchen, absorbieren diese individuell ganz bestimmte Wellenlängen ihres Spektrums.

Damit verfügt jedes Molekül über einen unverwechselbaren Fingerabdruck. Denn die absorbierten Photonen tauchen nach der Licht-Materie-Wechselwirkung im Infrarotspektrum des Laserpulses nicht mehr auf. Die Forscher sehen anhand des übrig gebliebenen Lichts mit welchen Molekülen es Kontakt hatte, und können so auf die Art und Menge der vorhandenen Moleküle rückschließen.

„Da wir nun über eine kompakte Quelle für hochbrillantes, kohärentes Infrarotlicht verfügen, haben wir mit unserem Instrument einen äußerst empfindlichen und serientauglichen Fühler zur Detektion von Molekülen“, erklärt Dr. Ioachim Pupeza, der Leiter des Projekts.

Eingesetzt werden soll der Infrarotlaser nun an der LMU vor allem in der medizinischen Früherkennung von Krankheiten. So kann man mit dem gepulsten Infrarotlicht etwa Krankheitsindikatoren in der Atemluft auf die Schliche zu kommen. Denn Krankheiten, wie einige Arten von Krebs, machen sich vermutlich bemerkbar über das Ausatmen von bestimmten Molekülen.

„Wir gehen davon aus, dass sich in der Atemluft weit über 1000 verschiedene Molekülsorten befinden", sagt Dr. Alexander Apolonskiy, Mitarbeiter im Projekt. Die Moleküle, die eine Krankheit anzeigen, kommen in der Atemluft nur in einer äußerst geringen Konzentration vor. Die Forscher schätzen, dass man ein Molekül unter einer Billion anderer in der Atemluft erkennen muss.

„Dank der Kohärenzeigenschaften des neuen Lasers sollten wir bereits in der Lage sein, ein einziges Teilchen aus einer Milliarde anderer Moleküle zu erkennen“, sagt Ioachim Pupeza. „Entscheidend ist darüber hinaus die extreme breite spektrale Abdeckung dieser hochbrillanten Infrarotquelle. Sie ermöglicht es erst, zwischen molekularen Fingerabdrücken zu unterscheiden und damit auf krebsartige Veränderungen zu schließen“, sagt Prof. Jens Biegert. Seine Abteilung verfolgt die Quellenentwicklung im Infraroten und deren Anwendungen am ICFO in Barcelona.

Doch die Laserentwicklung ist noch nicht abgeschlossen. Die Forscher wollen nun ihren Kurzpulslaser koppeln mit einem neuen Verstärkersystem für Laserimpulse. Es geht vor allem darum, die Zahl der Photonen in den Impulsen weiter zu erhöhen und somit noch brillanteres Licht zu erzeugen. „Wir können die Empfindlichkeit des Systems damit noch einmal rund 1000mal steigern“, erklärt Pupeza. Und damit könnte ein Molekül unter einer Billion anderer erkannt werden.

Text: Thorsten Naeser

Originalpublikation:

I. Pupeza, D. Sánchez, J. Zhang, N. Lilienfein, M. Seidel, N. Karpowicz, T. Paasch-Colberg, I. Znakovskaya, M. Pescher, W. Schweinberger, V. Pervak, E. Fill, O. Pronin, Z.Wei, F. Krausz, A. Apolonski and J. Biegert:
High-power sub-two-cycle mid-infrared pulses at 100 MHz repetition rate.
Nature Photonics, 21. September 2015; DOI: 10.1038/nphoton.2015.179.

Weitere Informationen erhalten Sie von:

Dr. Ioachim Pupeza
Max-Planck-Institut für Quantenoptik, Labor für Attosekundenphysik
Hans-Kopfermann-Straße 1, 85748 Garching
Tel.: +4989 289 14637
Email: ioachim.pupeza@mpq.mpg.de

Prof. Ferenc Krausz
Max-Planck-Institut für Quantenoptik, Labor für Attosekundenphysik
Hans-Kopfermann-Straße 1, 85748 Garching
Tel.: +4989 32905 600
Email: ferenc.krausz@mpq.mpg.de

Karolina Schneider | idw - Informationsdienst Wissenschaft
Weitere Informationen:
http://www.munich-photonics.de/

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Scharfe Röntgenblitze aus dem Atomkern
17.08.2017 | Max-Planck-Institut für Kernphysik, Heidelberg

nachricht Optische Technologien für schnellere Computer / „Licht“ mit Wespentaille
16.08.2017 | Universität Duisburg-Essen

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Unterwasserroboter soll nach einem Jahr in der arktischen Tiefsee auftauchen

Am Dienstag, den 22. August wird das Forschungsschiff Polarstern im norwegischen Tromsø zu einer besonderen Expedition in die Arktis starten: Der autonome Unterwasserroboter TRAMPER soll nach einem Jahr Einsatzzeit am arktischen Tiefseeboden auftauchen. Dieses Gerät und weitere robotische Systeme, die Tiefsee- und Weltraumforscher im Rahmen der Helmholtz-Allianz ROBEX gemeinsam entwickelt haben, werden nun knapp drei Wochen lang unter Realbedingungen getestet. ROBEX hat das Ziel, neue Technologien für die Erkundung schwer erreichbarer Gebiete mit extremen Umweltbedingungen zu entwickeln.

„Auftauchen wird der TRAMPER“, sagt Dr. Frank Wenzhöfer vom Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung (AWI) selbstbewusst. Der...

Im Focus: Mit Barcodes der Zellentwicklung auf der Spur

Darüber, wie sich Blutzellen entwickeln, existieren verschiedene Auffassungen – sie basieren jedoch fast ausschließlich auf Experimenten, die lediglich Momentaufnahmen widerspiegeln. Wissenschaftler des Deutschen Krebsforschungszentrums stellen nun im Fachjournal Nature eine neue Technik vor, mit der sich das Geschehen dynamisch erfassen lässt: Mithilfe eines „Zufallsgenerators“ versehen sie Blutstammzellen mit genetischen Barcodes und können so verfolgen, welche Zelltypen aus der Stammzelle hervorgehen. Diese Technik erlaubt künftig völlig neue Einblicke in die Entwicklung unterschiedlicher Gewebe sowie in die Krebsentstehung.

Wie entsteht die Vielzahl verschiedener Zelltypen im Blut? Diese Frage beschäftigt Wissenschaftler schon lange. Nach der klassischen Vorstellung fächern sich...

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Forscher entwickeln maisförmigen Arzneimittel-Transporter zum Inhalieren

Er sieht aus wie ein Maiskolben, ist winzig wie ein Bakterium und kann einen Wirkstoff direkt in die Lungenzellen liefern: Das zylinderförmige Vehikel für Arzneistoffe, das Pharmazeuten der Universität des Saarlandes entwickelt haben, kann inhaliert werden. Professor Marc Schneider und sein Team machen sich dabei die körpereigene Abwehr zunutze: Makrophagen, die Fresszellen des Immunsystems, fressen den gesundheitlich unbedenklichen „Nano-Mais“ und setzen dabei den in ihm enthaltenen Wirkstoff frei. Bei ihrer Forschung arbeiteten die Pharmazeuten mit Forschern der Medizinischen Fakultät der Saar-Uni, des Leibniz-Instituts für Neue Materialien und der Universität Marburg zusammen Ihre Forschungsergebnisse veröffentlichten die Wissenschaftler in der Fachzeitschrift Advanced Healthcare Materials. DOI: 10.1002/adhm.201700478

Ein Medikament wirkt nur, wenn es dort ankommt, wo es wirken soll. Wird ein Mittel inhaliert, muss der Wirkstoff in der Lunge zuerst die Hindernisse...

Im Focus: Exotische Quantenzustände: Physiker erzeugen erstmals optische „Töpfe" für ein Super-Photon

Physikern der Universität Bonn ist es gelungen, optische Mulden und komplexere Muster zu erzeugen, in die das Licht eines Bose-Einstein-Kondensates fließt. Die Herstellung solch sehr verlustarmer Strukturen für Licht ist eine Voraussetzung für komplexe Schaltkreise für Licht, beispielsweise für die Quanteninformationsverarbeitung einer neuen Computergeneration. Die Wissenschaftler stellen nun ihre Ergebnisse im Fachjournal „Nature Photonics“ vor.

Lichtteilchen (Photonen) kommen als winzige, unteilbare Portionen vor. Viele Tausend dieser Licht-Portionen lassen sich zu einem einzigen Super-Photon...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

European Conference on Eye Movements: Internationale Tagung an der Bergischen Universität Wuppertal

18.08.2017 | Veranstaltungen

Einblicke ins menschliche Denken

17.08.2017 | Veranstaltungen

Eröffnung der INC.worX-Erlebniswelt während der Technologie- und Innovationsmanagement-Tagung 2017

16.08.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Eine Karte der Zellkraftwerke

18.08.2017 | Biowissenschaften Chemie

Chronische Infektionen aushebeln: Ein neuer Wirkstoff auf dem Weg in die Entwicklung

18.08.2017 | Biowissenschaften Chemie

Computer mit Köpfchen

18.08.2017 | Informationstechnologie