Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Fehlstellen mit Potential

05.08.2011
Konstanzer Physiker weist gemeinsam mit amerikanischem Team den Diamanten als subatomares Speichermedium nach

Einem internationalen Kooperationsprojekt der Universität Konstanz und der University of California, Santa Barbara, USA, ist ein wichtiger Schritt in Richtung Quantencomputer gelungen:

In der Konstanzer Arbeitsgruppe des Theoretischen Physikers Prof. Guido Burkard wurde die Idee entwickelt, den Atomkern von Stickstoff-Fehlstellen im Diamanten als Speichereinheiten für einen Quantencomputer der Zukunft zu nutzen. In Kalifornien konnte unter der Federführung des Physikers Prof. David Awschalom die Theorie experimentell bestätigt werden. Das Ergebnis der Zusammenarbeit erscheint demnächst in Nature Physics.

In der Online-Ausgabe der Zeitschrift ist der Artikel bereits jetzt unter http://www.nature.com/nphys/journal/vaop/ncurrent/abs/nphys2026.html veröffentlicht.

Die Stickstoff-Fehlstellen sind dafür verantwortlich, dass Diamanten rosa glitzern können. Das macht die Verunreinigungen für die Welt des Schmucks so attraktiv – aber nicht nur für sie. Die Quantenphysik hat einen bestimmten Typ dieser Fehlstellen als Speichermedium mit immensem Potential entdeckt. Diese Farbzentren, wie sie auch genannt werden, verfügen über gleich zwei Spins, Eigendrehimpulse der Teilchen, mit denen, wie die deutsch-amerikanische Arbeitsgruppe zeigen konnte, ein ganz spezieller Informationsaustausch möglich ist: Informationen des kurzlebigen Elektronen-Spins, die gerade nicht gebraucht werden, lassen sich auf dem langlebigeren Spin des Stickstoff-Atomkerns zwischenspeichern. Auch die Umkehrung funktioniert: Die Information – als quantenmechanische Variante des konventionellen Bits Qubit genannt – kann vom Kern-Spin wieder auf den Elektronen-Spin zurück geholt werden.

Die relative Langlebigkeit des Kern-Spins bedeutet hier ein Zeitfenster von ein paar Tausendstel Sekunden. Der fragilere Elektronen-Spin bringt es dagegen nur auf eine Lebensdauer von ein paar Millionstel Sekunden. „Das klingt nach sehr wenig“, gesteht Guido Burkard ein, „das muss man aber vergleichen mit der Zeit, die gebraucht wird, um eine Rechnung durchzuführen. Und das kann sehr schnell sein.“ Die Speichertechnik mit den Diamant-Fehlstellen hat gegenüber der Konkurrenz mit Halbleitern nicht nur den Vorteil, dass ihre Spins länger leben, sondern, dass sie bei Raumtemperatur durchführbar ist. Die Quanteninformationen der Halbleiter-Spins haben nur bei Temperaturen nahe dem absoluten Nullpunkt Bestand und sind somit wesentlich störungsanfälliger.

Über ein äußeres Magnetfeld werden die beiden Spins in Verbindung gebracht und ihre Spin-Qubits so vermischt, dass der Elektronen-Spin auf den Kern-Spin übergeht und dort gespeichert wird. Auch der Rücktransfer des Spins lässt sich über das Magnetfelds steuern. Für die Arbeitsgruppe in Kalifornien bestand die Herausforderung darin, das Magnetfeld so genau einzustellen, dass keine störenden Streufelder entstehen. Es gelang den Wissenschaftlern im Labor, eine einzelne Fehlstelle anzusteuern, so dass der Elektronen-Spin auf dem Kern-Spin abgespeichert und schließlich zurück geholt werden konnte. Das Experiment bestätigte die korrekte Abspeicherung der Quanteninformation inklusive der so genannten Phase, die als quantenmechanische Eigenschaft ebenfalls richtig abgespeichert sein muss. Damit konnte die theoretische Voraussage des Konstanzer Physikers Burkard bestätigt werden.

Für „diesen extrem schnellen Informationentransfer“, wie ihn Guido Burkard kennzeichnet und wie ihn ein Quantencomputer realisieren soll, ist diese Speichertechnik von großer Bedeutung. Der Spin liefert die Möglichkeit der Informationsverarbeitung mit quantenmechanisch vervielfachtem Effekt: Das Bit eines herkömmlichen Computers weist aufgrund des binären Prinzips die Einstellungen 0 und 1 auf. Mit dem Spin ist es möglich, dass die Qubits mehrere Zustände gleichzeitig annehmen. Damit würde der Rechner nicht nur unvergleichlich schneller, sondern könnte auch mehrere Rechenoperationen gleichzeitig durchführen, eine Vision, die durch die Ergebnisse der deutsch-amerikanischen Zusammenarbeit ein Stück näher gerückt ist. Mithilfe der Quantencomputer ließen sich zum Beispiel die Probleme der Durchsuchung großer Datenbanken oder der Primfaktorzerlegung effizienter lösen. Die Schwierigkeit, mit herkömmlichen Computern große Zahlen in ihre Primfaktoren zu zerlegen, ist die Grundlage der kryptografischen Systeme zur Verschlüsselung von Daten, z. B. im Internet.

Guido Burkard ist seit 2008 Professor für Theoretische Physik an der Universität Konstanz. Seine Forschungsgebiete umfassen die Theorie der kondensierten Materie und die Quanteninformation. Der im Schweizer Baar geborene Physiker wurde an der Universität Basel promoviert. Er war als Wissenschaftlicher Mitarbeiter am IBM T.J. Watson Research Center in New York tätig, war Inhaber einer Förderprofessur des Schweizer Nationalfonds an der Universität Basel und – bis zu seiner Anstellung an der Universität Konstanz – einer Professur an der RTWH Aachen.

Kontakt:
Universität Konstanz
Kommunikation und Marketing
Telefon: 07531 / 88-3603
E-Mail: kum@uni-konstanz.de
Prof. Dr. Guido Burkard
Universität Konstanz
Fachbereich Physik
Universitätsstraße 10
78464 Konstanz
Telefon: 07531 / 88-5256
E-Mail: Guido.Burkard@uni-konstanz.de

Julia Wandt |
Weitere Informationen:
http://theorie.physik.uni-konstanz.de/burkard/
http://www.uni-konstanz.de

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Schnell wachsende Galaxien könnten kosmisches Rätsel lösen – zeigen früheste Verschmelzung
26.05.2017 | Max-Planck-Institut für Astronomie

nachricht 3D-Graphen: Experiment an BESSY II zeigt, dass optische Eigenschaften einstellbar sind
24.05.2017 | Helmholtz-Zentrum Berlin für Materialien und Energie GmbH

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Lässt sich mit Boten-RNA das Immunsystem gegen Staphylococcus aureus scharf schalten?

Staphylococcus aureus ist aufgrund häufiger Resistenzen gegenüber vielen Antibiotika ein gefürchteter Erreger (MRSA) insbesondere bei Krankenhaus-Infektionen. Forscher des Paul-Ehrlich-Instituts haben immunologische Prozesse identifiziert, die eine erfolgreiche körpereigene, gegen den Erreger gerichtete Abwehr verhindern. Die Forscher konnten zeigen, dass sich durch Übertragung von Protein oder Boten-RNA (mRNA, messenger RNA) des Erregers auf Immunzellen die Immunantwort in Richtung einer aktiven Erregerabwehr verschieben lässt. Dies könnte für die Entwicklung eines wirksamen Impfstoffs bedeutsam sein. Darüber berichtet PLOS Pathogens in seiner Online-Ausgabe vom 25.05.2017.

Staphylococcus aureus (S. aureus) ist ein Bakterium, das bei weit über der Hälfte der Erwachsenen Haut und Schleimhäute besiedelt und dabei normalerweise keine...

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: Orientierungslauf im Mikrokosmos

Physiker der Universität Würzburg können auf Knopfdruck einzelne Lichtteilchen erzeugen, die einander ähneln wie ein Ei dem anderen. Zwei neue Studien zeigen nun, welches Potenzial diese Methode hat.

Der Quantencomputer beflügelt seit Jahrzehnten die Phantasie der Wissenschaftler: Er beruht auf grundlegend anderen Phänomenen als ein herkömmlicher Rechner....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Tumult im trägen Elektronen-Dasein

Ein internationales Team von Physikern hat erstmals das Streuverhalten von Elektronen in einem nichtleitenden Material direkt beobachtet. Ihre Erkenntnisse könnten der Strahlungsmedizin zu Gute kommen.

Elektronen in nichtleitenden Materialien könnte man Trägheit nachsagen. In der Regel bleiben sie an ihren Plätzen, tief im Inneren eines solchen Atomverbunds....

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Meeresschutz im Fokus: Das IASS auf der UN-Ozean-Konferenz in New York vom 5.-9. Juni

24.05.2017 | Veranstaltungen

Diabetes Kongress in Hamburg beginnt heute: Rund 6000 Teilnehmer werden erwartet

24.05.2017 | Veranstaltungen

Wissensbuffet: „All you can eat – and learn”

24.05.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

DFG fördert 15 neue Sonderforschungsbereiche (SFB)

26.05.2017 | Förderungen Preise

Lässt sich mit Boten-RNA das Immunsystem gegen Staphylococcus aureus scharf schalten?

26.05.2017 | Biowissenschaften Chemie

Unglaublich formbar: Lesen lernen krempelt Gehirn selbst bei Erwachsenen tiefgreifend um

26.05.2017 | Gesellschaftswissenschaften