Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

FAU-Forscher kommen ungewöhnlichem Verhalten des elektrischen Widerstands auf die Spur

23.06.2015

Graphen – eine einzelne atomar dünne Lage des Alltagsmaterials Graphit – ist für viele Überraschungen gut. Für die Entdeckung dieses Materials wurde 2010 der Nobelpreis für Physik vergeben. Bei der Untersuchung der Doppellage von Graphen gab es nun eine spannende Beobachtung, die den Schlüssel zu einem rätselhaften Phänomen der Festkörperphysik liefert: ein ungewöhnliches Verhalten des elektrischen Widerstands im Magnetfeld. FAU-Forscher können dies nun erklären.

Beim Zusammenbringen der zwei atomar dünnen Graphenlagen bilden sich auf atomarer Skala kleinstmögliche Falten, die das Material in der Fläche in ein Mosaik zerteilen. Der elektrische Strom geht im Magnetfeld verschlungene Wege durch dieses Mosaik, was das ungewöhnliche Phänomen hervorruft. Ihre Erkenntnisse veröffentlichten Wissenschaftler der FAU jetzt in der renommierten Fachzeitschrift Nature Physics.*

Legt man an ein Material ein Magnetfeld an, reagiert der elektrische Widerstand in fast allen Materialien gleich: Er wächst mit der Erhöhung der Magnetfeldstärke in Form einer Parabel. Es gibt jedoch in der Literatur sporadisch Gegenbeispiele aus unterschiedlichsten Materialklassen, in denen sich ganz überraschend der Widerstand nicht parabolisch, sondern linear verhält – er wächst also direkt proportional zur Größe des Magnetfelds.

Warum dies so ist, gab den Forschern Jahrzehnte lang Rätsel auf – vermutet wurde, auf Grund der Unabhängigkeit von der Materialklasse, ein sehr allgemeiner Mechanismus, der zuletzt der Körnigkeit des Materials zugeschrieben wurde.

Seit 2003 gibt es ein extrem vereinfachtes theoretisches Modell, das wohl den Kern des Effekts erfasst, aber nicht direkt mit Experimenten belegbar ist und viele Fragen offen lässt. Prof. Dr. Heiko B. Weber am Lehrstuhl für Angewandte Physik an der FAU und seine Arbeitsgruppe konnten nun ein Modellsystem finden, das zum Verständnis exakt dieses Phänomens führte. Ihre Beobachtung: In Doppellagen-Graphen verhält sich der Magnetowiderstand linear – anders als in einlagigem Graphen.

Doppellagiges Graphen ist eine zwei Atome dicke Schicht des Alltagsmaterials Graphit. Die Herstellung qualitativ hochwertigen, doppellagigen Graphens beherrschen die Erlanger Physiker seit vielen Jahren außergewöhnlich gut. Doch auch sie hat es überrascht, dass die Messung des Magnetowiderstandes in der Graphen-Doppellage ab einer Magnetfeldstärke von etwa 1 Tesla – das entspricht in etwa dem Magnetfeld eines modernen Neodym-Dauermagneten – plötzlich ein lineares Verhalten bei wachsendem Magnetfeld ergab.

Weber und sein Team wollten nun genau wissen, bis zu welcher Magnetfeldstärke dieser Effekt auftritt: Sie führten daher Messungen im Hochfeld-Magnetlabor Dresden am Helmholtz-Zentrum Dresden-Rossendorf durch. Dort wurden die Materialproben für einige Millisekunden Magnetfeldern bis zu 70 Tesla ausgesetzt, das ist nahe an der Grenze des technisch Machbaren. Doch auch unter diesen extremen Umständen setzt sich das lineare Verhalten des Magnetowiderstands von Doppellagen-Graphen linear fort – ein robuster Effekt, so die Beobachtung der FAU-Forscher.

Daraufhin galt es, den Grund für dieses Verhalten zu identifizieren. Die vermutete Körnigkeit – die bislang immer als mögliche Ursache für lineares Verhalten des Widerstands herangezogen worden war – schien bei der augenscheinlich homogenen Graphen-Doppellage nicht gegeben.

Doch der (Augen-)schein trog: Bei der Beobachtung unter dem Transmissions-Elektronen-Mikroskop (TEM) in der Arbeitsgruppe um Prof. Dr. Erdmann Spiecker in Erlangen zeigte sich, dass Graphen, wenn es doppellagig ist, sehr wohl eine Körnigkeit aufweist. Der Grund: Es bilden sich auf atomarer Skala kleinstmögliche Falten in der doppelten Lage, sogenannte Partialversetzungen, durch die das Material als Mosaik erscheint.

Für die elektronischen Eigenschaften dieses Mosaiks entwickelte Dr. Sam Shallcross, Lehrstuhl für Festkörpertheorie an der FAU, ein quantenmechanisches Modell, das den elektronischen Übergang von einem Mosaikstein auf den anderen berechnet.

Überraschenderweise zieht jede Versetzungslinie eine sehr wirksame Barriere für den elektrischen Strom. Auf der Basis tatsächlicher, unter dem Mikroskop sichtbarer Versetzungslinien haben die Forscher die verschlungenen Strompfade im Magnetfeld berechnen können – und den genannten Effekt gefunden.

Graphen ist ein Material, das man im Mikroskop wie ein offenes Buch in allen Details betrachten kann. Solche Details sind der Schlüssel, um grundlegende Fragestellungen außergewöhnlicher Phänomene zu verstehen.

In diesem Fall ist doppellagiges Graphen das perfekte Modellsystem für einen mosaikartigen Leiter. Der Effekt eines linearen Magnetowiderstands wird wegen des explosiv zunehmenden Interesses an atomar dünnen Schichten in naher Zukunft in immer mehr Materialien sichtbar werden – und kann auf der Basis der Experimente von Prof. Weber und seinem Team als verstanden betrachtet werden.

*DOI: 10.1038/nphys3368


Ansprechpartner für die Medien:

Prof. Dr. Heiko B. Weber
Tel.: 09131/85-28421
heiko.weber@physik.uni-erlangen.de

Dr. Susanne Langer | idw - Informationsdienst Wissenschaft
Weitere Informationen:
http://www.fau.de/

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Heiß & kalt – Gegensätze ziehen sich an
25.04.2017 | Universität Wien

nachricht Astronomen-Team findet Himmelskörper mit „Schmauchspuren“
25.04.2017 | Rheinische Friedrich-Wilhelms-Universität Bonn

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: TU Chemnitz präsentiert weltweit einzigartige Pilotanlage für nachhaltigen Leichtbau

Wickelprinzip umgekehrt: Orbitalwickeltechnologie soll neue Maßstäbe in der großserientauglichen Fertigung komplexer Strukturbauteile setzen

Mitarbeiterinnen und Mitarbeiter des Bundesexzellenzclusters „Technologiefusion für multifunktionale Leichtbaustrukturen" (MERGE) und des Instituts für...

Im Focus: Smart Wireless Solutions: EU-Großprojekt „DEWI“ liefert Innovationen für eine drahtlose Zukunft

58 europäische Industrie- und Forschungspartner aus 11 Ländern forschten unter der Leitung des VIRTUAL VEHICLE drei Jahre lang, um Europas führende Position im Bereich Embedded Systems und dem Internet of Things zu stärken. Die Ergebnisse von DEWI (Dependable Embedded Wireless Infrastructure) wurden heute in Graz präsentiert. Zu sehen war eine Fülle verschiedenster Anwendungen drahtloser Sensornetzwerke und drahtloser Kommunikation – von einer Forschungsrakete über Demonstratoren zur Gebäude-, Fahrzeug- oder Eisenbahntechnik bis hin zu einem voll vernetzten LKW.

Was vor wenigen Jahren noch nach Science-Fiction geklungen hätte, ist in seinem Ansatz bereits Wirklichkeit und wird in Zukunft selbstverständlicher Teil...

Im Focus: Weltweit einzigartiger Windkanal im Leipziger Wolkenlabor hat Betrieb aufgenommen

Am Leibniz-Institut für Troposphärenforschung (TROPOS) ist am Dienstag eine weltweit einzigartige Anlage in Betrieb genommen worden, mit der die Einflüsse von Turbulenzen auf Wolkenprozesse unter präzise einstellbaren Versuchsbedingungen untersucht werden können. Der neue Windkanal ist Teil des Leipziger Wolkenlabors, in dem seit 2006 verschiedenste Wolkenprozesse simuliert werden. Unter Laborbedingungen wurden z.B. das Entstehen und Gefrieren von Wolken nachgestellt. Wie stark Luftverwirbelungen diese Prozesse beeinflussen, konnte bisher noch nicht untersucht werden. Deshalb entstand in den letzten Jahren eine ergänzende Anlage für rund eine Million Euro.

Die von dieser Anlage zu erwarteten neuen Erkenntnisse sind wichtig für das Verständnis von Wetter und Klima, wie etwa die Bildung von Niederschlag und die...

Im Focus: Nanoskopie auf dem Chip: Mikroskopie in HD-Qualität

Neue Erfindung der Universitäten Bielefeld und Tromsø (Norwegen)

Physiker der Universität Bielefeld und der norwegischen Universität Tromsø haben einen Chip entwickelt, der super-auflösende Lichtmikroskopie, auch...

Im Focus: Löschbare Tinte für den 3-D-Druck

Im 3-D-Druckverfahren durch Direktes Laserschreiben können Mikrometer-große Strukturen mit genau definierten Eigenschaften geschrieben werden. Forscher des Karlsruher Institus für Technologie (KIT) haben ein Verfahren entwickelt, durch das sich die 3-D-Tinte für die Drucker wieder ‚wegwischen‘ lässt. Die bis zu hundert Nanometer kleinen Strukturen lassen sich dadurch wiederholt auflösen und neu schreiben - ein Nanometer entspricht einem millionstel Millimeter. Die Entwicklung eröffnet der 3-D-Fertigungstechnik vielfältige neue Anwendungen, zum Beispiel in der Biologie oder Materialentwicklung.

Beim Direkten Laserschreiben erzeugt ein computergesteuerter, fokussierter Laserstrahl in einem Fotolack wie ein Stift die Struktur. „Eine Tinte zu entwickeln,...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Internationaler Tag der Immunologie - 29. April 2017

28.04.2017 | Veranstaltungen

Kampf gegen multiresistente Tuberkulose – InfectoGnostics trifft MYCO-NET²-Partner in Peru

28.04.2017 | Veranstaltungen

123. Internistenkongress: Traumata, Sprachbarrieren, Infektionen und Bürokratie – Herausforderungen

27.04.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Über zwei Millionen für bessere Bordnetze

28.04.2017 | Förderungen Preise

Symbiose-Bakterien: Vom blinden Passagier zum Leibwächter des Wollkäfers

28.04.2017 | Biowissenschaften Chemie

Wie Pflanzen ihre Zucker leitenden Gewebe bilden

28.04.2017 | Biowissenschaften Chemie