Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

FAU-Forscher beschleunigen erstmals Licht mit einem diametralen Antrieb

15.10.2013
Physiker der Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) haben erstmals experimentell nachgewiesen, dass Lichtpulse sich gegenseitig permanent beschleunigen können.

Damit ließe sich etwa die Wellenlänge von Lichtpulsen kontrolliert verschieben, was für viele Bereiche der Laserphysik oder Spektroskopie interessant wäre. Diese Ergebnisse haben die Wissenschaftler in der renommierten Zeitschrift „Nature Physics“ publiziert*.


Künstlerische Darstellung des optischen diametralen Antriebs auf Basis von Messdaten. Der linke Pulszug mit positiver effektiver Masse und der rechte Pulszug mit negativer Masse beschleunigen durch eine Umkehr des 3. Newtonsches Gesetzes in die gleiche Richtung.

Foto: FAU


Veranschaulichung von Teilchen mit positiver Masse (rot) und negativer Masse (blau). Während positive Massen beschleunigen, wenn sie in ein Tal hinabwandern und abbremsen, wenn sie auf einen Hügel treffen, verhalten sich die blauen Kugeln mit negativer Masse gerade umgekehrt und werden vom Tal abgestoßen.

Foto: FAU

Vor 15 Jahren dachte ein Forschungsteam der NASA darüber nach, wie man den idealen Raumantrieb bauen könnte. Dabei hatte der Wissenschaftler Marc G. Millis die etwas eigensinnige Idee, Objekte mit einer negativen Masse als Triebwerke einzusetzen. Wenn sich zwei Körper mit positiver Masse gegenseitig anziehen, so werden sie nach den Regeln der Newtonschen Mechanik stets aufeinander zu beschleunigt. Die Kombination von Objekten mit positiver und negativer Masse ermöglicht hingegen ein unerwartetes Phänomen:

Wirkt eine Kraft zwischen ihnen, so beschleunigen beide Körper fortwährend in dieselbe Raumrichtung und werden so immer schneller. Diese Konstellation bezeichnete Millis als „Diametric Drive“ (zu Deutsch: diametraler Antrieb). Von einer Umsetzung dieser potentiell bahnbrechenden Idee ist bis dato nichts bekannt, und auch in ferner Zukunft werden Raumfahrer wohl eher auf diesen revolutionären Antrieb verzichten müssen.

„Die Existenz von mechanischen Objekten mit einer negativen Masse verstößt im freien Raum gegen derart viele Grundgesetze der Physik, dass sie mit großer Sicherheit ausgeschlossen werden kann“, sagt Prof. Dr. Ulf Peschel, Professor für Experimentalphysik an der FAU.

Aber eben nur im freien Raum: Die Einschränkungen gelten nicht für künstlich geschaffene Systeme, innerhalb derer ganz eigene Gesetzmäßigkeiten gelten. Diese Tatsache machten sich nun Forscher um Prof. Peschel zu Nutze, um die optische Entsprechung eines Diametric Drive zu realisieren. Zusammen mit Kollegen vom Max-Planck-Institut für die Physik des Lichts und von der University of Central Florida, USA, schufen sie ein optisches Fasernetzwerk, in dem sich speziell präparierte Lichtpakete vollkommen analog zu mechanischen Teilchen mit positiver oder negativer effektiver Masse verhalten:

Bringt man ein Lichtbündel mit negativer effektiver Masse in die Nähe eines anderen Strahls mit positiver Masse, so entsteht durch nichtlineare Wechselwirkung ein optischer Diametric Drive. „Die beiden Lichtbündel beschleunigen in dieselbe Richtung und werden immer schneller, so wie man es eben bei einem diametralen Antrieb erwarten würde“, erklären die Optik-Forscher das Experiment. Die Wissenschaftler sind sich sicher, dass dieser Effekt auf eine Vielzahl von anderen physikalischen Systemen übertragen werden kann.

Womöglich ließen sich also auf die gleiche Weise auch Elektronen in Halbleitern oder ultrakalte Atome in optischen Gittern beschleunigen, da die Wirkungsweise auf dem universellen Konzept der effektiven Masse beruht. Auch in der Optik könnten verschiedene Anwendungsfelder vom Diametric Drive profitieren, zum Beispiel durch die Möglichkeit, die Lichtwellenlänge mit Hilfe von speziellen Glasfasern zu verändern.

Auch wenn der Raumantrieb mit negativer Masse letztlich wohl nur ein Luftschloss bleiben wird, so hat diese Science-Fiction-artige Idee von Marc G. Millis nach über 15 Jahren auf Umwegen doch noch den Sprung in die Realität geschafft. Sein ursprüngliches Konzept lässt sich übrigens nachlesen: M. G. Millis, „Challenge to Create the Space Drive“, Journal of Propulsion and Power (1997), http://www.grc.nasa.gov/WWW/bpp/1997-J_AIAA_SpaceDr.pdf

* M. Wimmer et al, „Optical diametric drive acceleration via action-reaction symmetry breaking“, in: Nature Physics. DOI: 10.1038/NPHYS2777

Ansprechpartner:
Alois Regensburger
Tel.: 09131/8520343
alois.regensburger@physik.uni-erlangen.de

Blandina Mangelkramer | idw
Weitere Informationen:
http://www.uni-erlangen.de

Weitere Berichte zu: Antrieb Diametric Lichtbündel Nature Physics Raumantrieb Triebwerke Wellenlänge

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Radioaktive Elemente in Cassiopeia A liefern Hinweise auf Neutrinos als Ursache der Supernova-Explosion
23.06.2017 | Max-Planck-Institut für Astrophysik

nachricht Individualisierte Faserkomponenten für den Weltmarkt
22.06.2017 | Laser Zentrum Hannover e.V. (LZH)

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Klima-Satellit: Mit robuster Lasertechnik Methan auf der Spur

Hitzewellen in der Arktis, längere Vegetationsperioden in Europa, schwere Überschwemmungen in Westafrika – mit Hilfe des deutsch-französischen Satelliten MERLIN wollen Wissenschaftler ab 2021 die Emissionen des Treibhausgases Methan auf der Erde erforschen. Möglich macht das ein neues robustes Lasersystem des Fraunhofer-Instituts für Lasertechnologie ILT in Aachen, das eine bisher unerreichte Messgenauigkeit erzielt.

Methan entsteht unter anderem bei Fäulnisprozessen. Es ist 25-mal wirksamer als das klimaschädliche Kohlendioxid, kommt in der Erdatmosphäre aber lange nicht...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: Die Schweiz in Pole-Position in der neuen ESA-Mission

Die Europäische Weltraumagentur ESA gab heute grünes Licht für die industrielle Produktion von PLATO, der grössten europäischen wissenschaftlichen Mission zu Exoplaneten. Partner dieser Mission sind die Universitäten Bern und Genf.

Die Europäische Weltraumagentur ESA lanciert heute PLATO (PLAnetary Transits and Oscillation of stars), die grösste europäische wissenschaftliche Mission zur...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Von Batterieforschung bis Optoelektronik

23.06.2017 | Veranstaltungen

10. HDT-Tagung: Elektrische Antriebstechnologie für Hybrid- und Elektrofahrzeuge

22.06.2017 | Veranstaltungen

„Fit für die Industrie 4.0“ – Tagung von Hochschule Darmstadt und Schader-Stiftung am 27. Juni

22.06.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Radioaktive Elemente in Cassiopeia A liefern Hinweise auf Neutrinos als Ursache der Supernova-Explosion

23.06.2017 | Physik Astronomie

Dünenökosysteme modellieren

23.06.2017 | Ökologie Umwelt- Naturschutz

Makro-Mikrowelle macht Leichtbau für Luft- und Raumfahrt effizienter

23.06.2017 | Materialwissenschaften