Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

FAU-Forscher beschleunigen erstmals Licht mit einem diametralen Antrieb

15.10.2013
Physiker der Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) haben erstmals experimentell nachgewiesen, dass Lichtpulse sich gegenseitig permanent beschleunigen können.

Damit ließe sich etwa die Wellenlänge von Lichtpulsen kontrolliert verschieben, was für viele Bereiche der Laserphysik oder Spektroskopie interessant wäre. Diese Ergebnisse haben die Wissenschaftler in der renommierten Zeitschrift „Nature Physics“ publiziert*.


Künstlerische Darstellung des optischen diametralen Antriebs auf Basis von Messdaten. Der linke Pulszug mit positiver effektiver Masse und der rechte Pulszug mit negativer Masse beschleunigen durch eine Umkehr des 3. Newtonsches Gesetzes in die gleiche Richtung.

Foto: FAU


Veranschaulichung von Teilchen mit positiver Masse (rot) und negativer Masse (blau). Während positive Massen beschleunigen, wenn sie in ein Tal hinabwandern und abbremsen, wenn sie auf einen Hügel treffen, verhalten sich die blauen Kugeln mit negativer Masse gerade umgekehrt und werden vom Tal abgestoßen.

Foto: FAU

Vor 15 Jahren dachte ein Forschungsteam der NASA darüber nach, wie man den idealen Raumantrieb bauen könnte. Dabei hatte der Wissenschaftler Marc G. Millis die etwas eigensinnige Idee, Objekte mit einer negativen Masse als Triebwerke einzusetzen. Wenn sich zwei Körper mit positiver Masse gegenseitig anziehen, so werden sie nach den Regeln der Newtonschen Mechanik stets aufeinander zu beschleunigt. Die Kombination von Objekten mit positiver und negativer Masse ermöglicht hingegen ein unerwartetes Phänomen:

Wirkt eine Kraft zwischen ihnen, so beschleunigen beide Körper fortwährend in dieselbe Raumrichtung und werden so immer schneller. Diese Konstellation bezeichnete Millis als „Diametric Drive“ (zu Deutsch: diametraler Antrieb). Von einer Umsetzung dieser potentiell bahnbrechenden Idee ist bis dato nichts bekannt, und auch in ferner Zukunft werden Raumfahrer wohl eher auf diesen revolutionären Antrieb verzichten müssen.

„Die Existenz von mechanischen Objekten mit einer negativen Masse verstößt im freien Raum gegen derart viele Grundgesetze der Physik, dass sie mit großer Sicherheit ausgeschlossen werden kann“, sagt Prof. Dr. Ulf Peschel, Professor für Experimentalphysik an der FAU.

Aber eben nur im freien Raum: Die Einschränkungen gelten nicht für künstlich geschaffene Systeme, innerhalb derer ganz eigene Gesetzmäßigkeiten gelten. Diese Tatsache machten sich nun Forscher um Prof. Peschel zu Nutze, um die optische Entsprechung eines Diametric Drive zu realisieren. Zusammen mit Kollegen vom Max-Planck-Institut für die Physik des Lichts und von der University of Central Florida, USA, schufen sie ein optisches Fasernetzwerk, in dem sich speziell präparierte Lichtpakete vollkommen analog zu mechanischen Teilchen mit positiver oder negativer effektiver Masse verhalten:

Bringt man ein Lichtbündel mit negativer effektiver Masse in die Nähe eines anderen Strahls mit positiver Masse, so entsteht durch nichtlineare Wechselwirkung ein optischer Diametric Drive. „Die beiden Lichtbündel beschleunigen in dieselbe Richtung und werden immer schneller, so wie man es eben bei einem diametralen Antrieb erwarten würde“, erklären die Optik-Forscher das Experiment. Die Wissenschaftler sind sich sicher, dass dieser Effekt auf eine Vielzahl von anderen physikalischen Systemen übertragen werden kann.

Womöglich ließen sich also auf die gleiche Weise auch Elektronen in Halbleitern oder ultrakalte Atome in optischen Gittern beschleunigen, da die Wirkungsweise auf dem universellen Konzept der effektiven Masse beruht. Auch in der Optik könnten verschiedene Anwendungsfelder vom Diametric Drive profitieren, zum Beispiel durch die Möglichkeit, die Lichtwellenlänge mit Hilfe von speziellen Glasfasern zu verändern.

Auch wenn der Raumantrieb mit negativer Masse letztlich wohl nur ein Luftschloss bleiben wird, so hat diese Science-Fiction-artige Idee von Marc G. Millis nach über 15 Jahren auf Umwegen doch noch den Sprung in die Realität geschafft. Sein ursprüngliches Konzept lässt sich übrigens nachlesen: M. G. Millis, „Challenge to Create the Space Drive“, Journal of Propulsion and Power (1997), http://www.grc.nasa.gov/WWW/bpp/1997-J_AIAA_SpaceDr.pdf

* M. Wimmer et al, „Optical diametric drive acceleration via action-reaction symmetry breaking“, in: Nature Physics. DOI: 10.1038/NPHYS2777

Ansprechpartner:
Alois Regensburger
Tel.: 09131/8520343
alois.regensburger@physik.uni-erlangen.de

Blandina Mangelkramer | idw
Weitere Informationen:
http://www.uni-erlangen.de

Weitere Berichte zu: Antrieb Diametric Lichtbündel Nature Physics Raumantrieb Triebwerke Wellenlänge

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Erforschung von Elementarteilchen in Materialien
17.01.2017 | Max-Planck-Institut für Struktur und Dynamik der Materie

nachricht Vermeintlich junger Stern entpuppt sich als galaktischer Greis
16.01.2017 | Ruhr-Universität Bochum

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Erforschung von Elementarteilchen in Materialien

Laseranregung von Semimetallen ermöglicht die Erzeugung neuartiger Quasiteilchen in Festkörpersystemen sowie ultraschnelle Schaltung zwischen verschiedenen Zuständen.

Die Untersuchung der Eigenschaften fundamentaler Teilchen in Festkörpersystemen ist ein vielversprechender Ansatz für die Quantenfeldtheorie. Quasiteilchen...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Mit solaren Gebäudehüllen Architektur gestalten

Solarthermie ist in der breiten Öffentlichkeit derzeit durch dunkelblaue, rechteckige Kollektoren auf Hausdächern besetzt. Für ästhetisch hochwertige Architektur werden Technologien benötigt, die dem Architekten mehr Gestaltungsspielraum für Niedrigst- und Plusenergiegebäude geben. Im Projekt »ArKol« entwickeln Forscher des Fraunhofer ISE gemeinsam mit Partnern aktuell zwei Fassadenkollektoren für solare Wärmeerzeugung, die ein hohes Maß an Designflexibilität erlauben: einen Streifenkollektor für opake sowie eine solarthermische Jalousie für transparente Fassadenanteile. Der aktuelle Stand der beiden Entwicklungen wird auf der BAU 2017 vorgestellt.

Im Projekt »ArKol – Entwicklung von architektonisch hoch integrierten Fassadekollektoren mit Heat Pipes« entwickelt das Fraunhofer ISE gemeinsam mit Partnern...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Bundesweiter Astronomietag am 25. März 2017

17.01.2017 | Veranstaltungen

Über intelligente IT-Systeme und große Datenberge

17.01.2017 | Veranstaltungen

Aquakulturen und Fangquoten – was hilft gegen Überfischung?

16.01.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Bundesweiter Astronomietag am 25. März 2017

17.01.2017 | Veranstaltungsnachrichten

Intelligente Haustechnik hört auf „LISTEN“

17.01.2017 | Architektur Bauwesen

Satellitengestützte Lasermesstechnik gegen den Klimawandel

17.01.2017 | Maschinenbau