Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

FAU-Forscher beschleunigen erstmals Licht mit einem diametralen Antrieb

15.10.2013
Physiker der Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) haben erstmals experimentell nachgewiesen, dass Lichtpulse sich gegenseitig permanent beschleunigen können.

Damit ließe sich etwa die Wellenlänge von Lichtpulsen kontrolliert verschieben, was für viele Bereiche der Laserphysik oder Spektroskopie interessant wäre. Diese Ergebnisse haben die Wissenschaftler in der renommierten Zeitschrift „Nature Physics“ publiziert*.


Künstlerische Darstellung des optischen diametralen Antriebs auf Basis von Messdaten. Der linke Pulszug mit positiver effektiver Masse und der rechte Pulszug mit negativer Masse beschleunigen durch eine Umkehr des 3. Newtonsches Gesetzes in die gleiche Richtung.

Foto: FAU


Veranschaulichung von Teilchen mit positiver Masse (rot) und negativer Masse (blau). Während positive Massen beschleunigen, wenn sie in ein Tal hinabwandern und abbremsen, wenn sie auf einen Hügel treffen, verhalten sich die blauen Kugeln mit negativer Masse gerade umgekehrt und werden vom Tal abgestoßen.

Foto: FAU

Vor 15 Jahren dachte ein Forschungsteam der NASA darüber nach, wie man den idealen Raumantrieb bauen könnte. Dabei hatte der Wissenschaftler Marc G. Millis die etwas eigensinnige Idee, Objekte mit einer negativen Masse als Triebwerke einzusetzen. Wenn sich zwei Körper mit positiver Masse gegenseitig anziehen, so werden sie nach den Regeln der Newtonschen Mechanik stets aufeinander zu beschleunigt. Die Kombination von Objekten mit positiver und negativer Masse ermöglicht hingegen ein unerwartetes Phänomen:

Wirkt eine Kraft zwischen ihnen, so beschleunigen beide Körper fortwährend in dieselbe Raumrichtung und werden so immer schneller. Diese Konstellation bezeichnete Millis als „Diametric Drive“ (zu Deutsch: diametraler Antrieb). Von einer Umsetzung dieser potentiell bahnbrechenden Idee ist bis dato nichts bekannt, und auch in ferner Zukunft werden Raumfahrer wohl eher auf diesen revolutionären Antrieb verzichten müssen.

„Die Existenz von mechanischen Objekten mit einer negativen Masse verstößt im freien Raum gegen derart viele Grundgesetze der Physik, dass sie mit großer Sicherheit ausgeschlossen werden kann“, sagt Prof. Dr. Ulf Peschel, Professor für Experimentalphysik an der FAU.

Aber eben nur im freien Raum: Die Einschränkungen gelten nicht für künstlich geschaffene Systeme, innerhalb derer ganz eigene Gesetzmäßigkeiten gelten. Diese Tatsache machten sich nun Forscher um Prof. Peschel zu Nutze, um die optische Entsprechung eines Diametric Drive zu realisieren. Zusammen mit Kollegen vom Max-Planck-Institut für die Physik des Lichts und von der University of Central Florida, USA, schufen sie ein optisches Fasernetzwerk, in dem sich speziell präparierte Lichtpakete vollkommen analog zu mechanischen Teilchen mit positiver oder negativer effektiver Masse verhalten:

Bringt man ein Lichtbündel mit negativer effektiver Masse in die Nähe eines anderen Strahls mit positiver Masse, so entsteht durch nichtlineare Wechselwirkung ein optischer Diametric Drive. „Die beiden Lichtbündel beschleunigen in dieselbe Richtung und werden immer schneller, so wie man es eben bei einem diametralen Antrieb erwarten würde“, erklären die Optik-Forscher das Experiment. Die Wissenschaftler sind sich sicher, dass dieser Effekt auf eine Vielzahl von anderen physikalischen Systemen übertragen werden kann.

Womöglich ließen sich also auf die gleiche Weise auch Elektronen in Halbleitern oder ultrakalte Atome in optischen Gittern beschleunigen, da die Wirkungsweise auf dem universellen Konzept der effektiven Masse beruht. Auch in der Optik könnten verschiedene Anwendungsfelder vom Diametric Drive profitieren, zum Beispiel durch die Möglichkeit, die Lichtwellenlänge mit Hilfe von speziellen Glasfasern zu verändern.

Auch wenn der Raumantrieb mit negativer Masse letztlich wohl nur ein Luftschloss bleiben wird, so hat diese Science-Fiction-artige Idee von Marc G. Millis nach über 15 Jahren auf Umwegen doch noch den Sprung in die Realität geschafft. Sein ursprüngliches Konzept lässt sich übrigens nachlesen: M. G. Millis, „Challenge to Create the Space Drive“, Journal of Propulsion and Power (1997), http://www.grc.nasa.gov/WWW/bpp/1997-J_AIAA_SpaceDr.pdf

* M. Wimmer et al, „Optical diametric drive acceleration via action-reaction symmetry breaking“, in: Nature Physics. DOI: 10.1038/NPHYS2777

Ansprechpartner:
Alois Regensburger
Tel.: 09131/8520343
alois.regensburger@physik.uni-erlangen.de

Blandina Mangelkramer | idw
Weitere Informationen:
http://www.uni-erlangen.de

Weitere Berichte zu: Antrieb Diametric Lichtbündel Nature Physics Raumantrieb Triebwerke Wellenlänge

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Waschen für die Mikrowelt – Potsdamer Physiker entwickeln lichtempfindliche Seife
02.12.2016 | Universität Potsdam

nachricht Quantenreibung: Jenseits der Näherung des lokalen Gleichgewichts
01.12.2016 | Forschungsverbund Berlin e.V.

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Greifswalder Forscher dringen mit superauflösendem Mikroskop in zellulären Mikrokosmos ein

Das Institut für Anatomie und Zellbiologie weiht am Montag, 05.12.2016, mit einem wissenschaftlichen Symposium das erste Superresolution-Mikroskop in Greifswald ein. Das Forschungsmikroskop wurde von der Deutschen Forschungsgemeinschaft (DFG) und dem Land Mecklenburg-Vorpommern finanziert. Nun können die Greifswalder Wissenschaftler Strukturen bis zu einer Größe von einigen Millionstel Millimetern mittels Laserlicht sichtbar machen.

Weit über hundert Jahre lang galt die von Ernst Abbe 1873 publizierte Theorie zur Auflösungsgrenze von Lichtmikroskopen als ein in Stein gemeißeltes Gesetz....

Im Focus: Durchbruch in der Diabetesforschung: Pankreaszellen produzieren Insulin durch Malariamedikament

Artemisinine, eine zugelassene Wirkstoffgruppe gegen Malaria, wandelt Glukagon-produzierende Alpha-Zellen der Bauchspeicheldrüse (Pankreas) in insulinproduzierende Zellen um – genau die Zellen, die bei Typ-1-Diabetes geschädigt sind. Das haben Forscher des CeMM Forschungszentrum für Molekulare Medizin der Österreichischen Akademie der Wissenschaften im Rahmen einer internationalen Zusammenarbeit mit modernsten Einzelzell-Analysen herausgefunden. Ihre bahnbrechenden Ergebnisse werden in Cell publiziert und liefern eine vielversprechende Grundlage für neue Therapien gegen Typ-1 Diabetes.

Seit einigen Jahren hatten sich Forscher an diesem Kunstgriff versucht, der eine simple und elegante Heilung des Typ-1 Diabetes versprach: Die vom eigenen...

Im Focus: Makromoleküle: Mit Licht zu Präzisionspolymeren

Chemikern am Karlsruher Institut für Technologie (KIT) ist es gelungen, den Aufbau von Präzisionspolymeren durch lichtgetriebene chemische Reaktionen gezielt zu steuern. Das Verfahren ermöglicht die genaue, geplante Platzierung der Kettengliedern, den Monomeren, entlang von Polymerketten einheitlicher Länge. Die präzise aufgebauten Makromoleküle bilden festgelegte Eigenschaften aus und eignen sich möglicherweise als Informationsspeicher oder synthetische Biomoleküle. Über die neuartige Synthesereaktion berichten die Wissenschaftler nun in der Open Access Publikation Nature Communications. (DOI: 10.1038/NCOMMS13672)

Chemische Reaktionen lassen sich durch Einwirken von Licht bei Zimmertemperatur auslösen. Die Forscher am KIT nutzen diesen Effekt, um unter Licht die...

Im Focus: Neuer Sensor: Was im Inneren von Schneelawinen vor sich geht

Ein neuer Radarsensor erlaubt Einblicke in die inneren Vorgänge von Schneelawinen. Entwickelt haben ihn Ingenieure der Ruhr-Universität Bochum (RUB) um Dr. Christoph Baer und Timo Jaeschke gemeinsam mit Kollegen aus Innsbruck und Davos. Das Messsystem ist bereits an einem Testhang im Wallis installiert, wo das Schweizer Institut für Schnee- und Lawinenforschung im Winter 2016/17 Messungen damit durchführen möchte.

Die erhobenen Daten sollen in Simulationen einfließen, die das komplexe Geschehen im Inneren von Lawinen detailliert nachbilden. „Was genau passiert, wenn sich...

Im Focus: Neuer Rekord an BESSY II: 10 Millionen Ionen erstmals bis auf 7,4 Kelvin gekühlt

Magnetische Grundzustände von Nickel2-Ionen spektroskopisch ermittelt

Ein internationales Team aus Deutschland, Schweden und Japan hat einen neuen Temperaturrekord für sogenannte Quadrupol-Ionenfallen erreicht, in denen...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Von „Coopetition“ bis „Digitale Union“ – Die Fertigungsindustrien im digitalen Wandel

02.12.2016 | Veranstaltungen

Experten diskutieren Perspektiven schrumpfender Regionen

01.12.2016 | Veranstaltungen

Die Perspektiven der Genom-Editierung in der Landwirtschaft

01.12.2016 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Parkinson-Krankheit und Dystonien: DFG-Forschergruppe eingerichtet

02.12.2016 | Förderungen Preise

Smart Data Transformation – Surfing the Big Wave

02.12.2016 | Studien Analysen

Nach der Befruchtung übernimmt die Eizelle die Führungsrolle

02.12.2016 | Biowissenschaften Chemie