Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Die Faszination von Schwärmen und Magnetschlangen

06.10.2008
Um das kollektive Verhalten von Schwärmen, schwimmenden Schlangen aus magnetischen Teilchen and deren Anwendung als Mikropumpen ging es jetzt bei der 3. Bayreuther Lorenz Kramer-Gedächtnisvorlesung mit dem Biophysiker und Materialforscher Prof. Igor Aronson vom Argonne National Laboratory (USA).

Ob Zebras, Vögel, Fische oder Mikroorganismen: Schließen sie sich in großen Schwärmen zusammen, so bilden sie faszinierende Bewegungsmuster. Diese zeigen überraschende Ähnlichkeiten mit Bewegungsformen von Teilchen, die einfachen physikalischen Gesetzen folgen.

Drei Prinzipien spielen dabei eine Hauptrolle, welche ebenso einfach wie allgemeingültig sind: Bleib stets bei der Gruppe, vermeide Zusammenstöße (ein Platz kann eh nur von einem Teilchen eingenommen werden), und beweg dich in dieselbe Richtung wie deine Nachbarn, wie Prof. Aronson mit Beispielen erläuterte.

Menschen ahmen nach, werden von Nachbarn beeinflusst und folgen Trends in der Mode oder auf Finanzmärkten. Dieses schwarmähnliche Verhalten weckt ebenfalls die forschende Neugier von Physikern. Bei näherer Betrachtung entdecken Wissenschaftler allerdings, dass jede Schwarmsorte oder jedes System mit Ordnungssinn in der Natur zusätzlichen eigenen Regeln folgt.

Die elementaren Prinzipien stecken in unterschiedlichen Variationen hinter vielen geordneten Bewegungen in der Natur. Weitere Beispiele sind auch die Bildung von Schäfchenwolken, von Wirbeln und Walzen in Flüssen, aber auch bei Magmaströmen im Erdinneren. Der Ordnungssinn in der Natur fasziniert aus vielerlei Gründen die Naturforscher und ist auch Thema des Forschungsschwerpunktes "Nichlineare Dynamik" an der Universität Bayreuth.
Der Ordnungssinn ist in jedem spezifischen System etwas anders ausgeprägt. Prof. Aronson erläuterte am Beispiel faszinierender und schöner Spiralenmuster, die in so unterschiedlichen Systemen, wie bei Schleimpilzen, bei chemischen Reaktionen oder bei Erregungswellen auf einem Herz auftreten, aber dabei doch ähnlichen Gesetzmäßigkeiten folgen.

Mit einem Lifeexperiment führte Prof. Aronson das Schwarmverhalten magnetischer Teilchen vor. Er zeigte, wie in Wasser gelöste Mikroteilchen aus Nickel auf ein Magnetfeld reagieren, wobei das Magnetfeld mit einer Frequenz von 30 bis 100 Hertz seine Richtung ändert. Sind die Teilchen bei Abwesenheit des Magnetfeldes auf möglichst großen Abstand bedacht, so ordnen sie sich im periodischen Magnetfeld zu einem schlangenförmigen Schwarm. Die Arbeitsgruppe war bei der Entdeckung dieses Selbstorganisationsphänomens ziemlich überrascht.

Bei genauerer Betrachtung besteht diese magnetische Schlange aus vielen kleinen Stabmagneten, welche sich im Magnetfeld durch Aneinanderreihung aus vielen kleinen Teilchen formen. Faszinierend an diesen Magnetschlangen ist auch deren Schwimmverhalten, was denen von Mikroorganismen ähnlich ist. Sie verhalten sich sonst in mehreren Aspekten wie Mikroorganismen, in dem sie beispielsweise Jagd auf andere Teilchen machen.

Magnetschlangen können in einer Sekunde mehr als das fünffache Ihrer eigenen Länge zurücklegen. Der mehrfache Olympiasieger Michael Phleps würde bei dieser Schwimmeffizenz vor Neid erblassen, so Prof. Aronson.

Prof. Aronson war mit seiner Arbeitsgruppe nicht auf der Suche nach Magnetschlangen. Sie wollten die physikalischen Gesetzmäßigkeiten erforschen, nach denen die im Wasser gelösten Magnetteilchen im periodischen Magnetfeld miteinander wechselwirken. Aber Entdeckungen erfolgen selten nach einem vorgefassten Plan. Sie sind das Produkt systematischen und neugierigen Forschens, so Prof. W. Zimmermann. Diese Überraschungseffekte sind Teil der Faszination von Forschung, die unsere Diplomanden und Doktoranden in unseren Labors miterleben können und als Erfahrung ins Berufsleben mitnehmen.

Mit diesen schlangenförmigen Schwärmen aus magnetischen Teilchen lassen sich nun elementare Prinzipien von Schwarmverhalten systematischer untersuchen. denn diese Teilchenschwärme sind im Gegensatz zu Fisch-, Vogel oder Bakterienschwärmen im Labor kontrollierbar. Mit ihnen kann man auch Langzeitexperimente durchführen, denn es gibt bei diesen Teilchenschwärmen kein Futterproblem, können diese Magnetteilchen doch fast beliebig lange durch ein periodisches Magnetfeld angetrieben werden.

Schafft man es, Magnetschlagen während ihrer Schwimmbewegung festzuhalten, so agieren sie wie kleine Mikropumpen auf die umgebende Flüssigkeit. Wie sich diese inzwischen patentierten Eigenschaften von Magnetschlagen in der Biotechnologie einsetzen lassen und wie man aus geordneten magnetischen Teilchen in Zukunft neue Speichermedien macht, wird viele Forscher weiter beschäftigen.

Jürgen Abel | idw
Weitere Informationen:
http://www.uni-bayreuth.de/

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Forscher verwandeln Diamant in Graphit
24.11.2017 | Deutsches Elektronen-Synchrotron DESY

nachricht Proton-Rekord: Magnetisches Moment mit höchster Genauigkeit gemessen
24.11.2017 | Johannes Gutenberg-Universität Mainz

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Metamaterial mit Dreheffekt

Mit 3D-Druckern für den Mikrobereich ist es Forschern des Karlsruher Instituts für Technologie (KIT) gelungen ein Metamaterial aus würfelförmigen Bausteinen zu schaffen, das auf Druckkräfte mit einer Rotation antwortet. Üblicherweise gelingt dies nur mit Hilfe einer Übersetzung wie zum Beispiel einer Kurbelwelle. Das ausgeklügelte Design aus Streben und Ringstrukturen, sowie die zu Grunde liegende Mathematik stellen die Wissenschaftler in der aktuellen Ausgabe der renommierten Fachzeitschrift Science vor.

„Übt man Kraft von oben auf einen Materialblock aus, dann deformiert sich dieser in unterschiedlicher Weise. Er kann sich ausbuchten, zusammenstauchen oder...

Im Focus: Proton-Rekord: Magnetisches Moment mit höchster Genauigkeit gemessen

Hochpräzise Messung des g-Faktors elf Mal genauer als bisher – Ergebnisse zeigen große Übereinstimmung zwischen Protonen und Antiprotonen

Das magnetische Moment eines einzelnen Protons ist unvorstellbar klein, aber es kann dennoch gemessen werden. Vor über zehn Jahren wurde für diese Messung der...

Im Focus: New proton record: Researchers measure magnetic moment with greatest possible precision

High-precision measurement of the g-factor eleven times more precise than before / Results indicate a strong similarity between protons and antiprotons

The magnetic moment of an individual proton is inconceivably small, but can still be quantified. The basis for undertaking this measurement was laid over ten...

Im Focus: Reibungswärme treibt hydrothermale Aktivität auf Enceladus an

Computersimulation zeigt, wie der Eismond Wasser in einem porösen Gesteinskern aufheizt

Wärme aus der Reibung von Gestein, ausgelöst durch starke Gezeitenkräfte, könnte der „Motor“ für die hydrothermale Aktivität auf dem Saturnmond Enceladus sein....

Im Focus: Frictional Heat Powers Hydrothermal Activity on Enceladus

Computer simulation shows how the icy moon heats water in a porous rock core

Heat from the friction of rocks caused by tidal forces could be the “engine” for the hydrothermal activity on Saturn's moon Enceladus. This presupposes that...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Mathematiker-Jahrestagung DMV + GDM: 5. bis 9. März 2018 an Uni Paderborn - Über 1.000 Teilnehmer

24.11.2017 | Veranstaltungen

Forschungsschwerpunkt „Smarte Systeme für Mensch und Maschine“ gegründet

24.11.2017 | Veranstaltungen

Schonender Hüftgelenkersatz bei jungen Patienten - Schlüssellochchirurgie und weniger Abrieb

24.11.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Mathematiker-Jahrestagung DMV + GDM: 5. bis 9. März 2018 an Uni Paderborn - Über 1.000 Teilnehmer

24.11.2017 | Veranstaltungsnachrichten

Maschinen über die eigene Handfläche steuern: Nachwuchspreis für Medieninformatik-Student

24.11.2017 | Förderungen Preise

Treibjagd in der Petrischale

24.11.2017 | Biowissenschaften Chemie