Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Die Faszination von Schwärmen und Magnetschlangen

06.10.2008
Um das kollektive Verhalten von Schwärmen, schwimmenden Schlangen aus magnetischen Teilchen and deren Anwendung als Mikropumpen ging es jetzt bei der 3. Bayreuther Lorenz Kramer-Gedächtnisvorlesung mit dem Biophysiker und Materialforscher Prof. Igor Aronson vom Argonne National Laboratory (USA).

Ob Zebras, Vögel, Fische oder Mikroorganismen: Schließen sie sich in großen Schwärmen zusammen, so bilden sie faszinierende Bewegungsmuster. Diese zeigen überraschende Ähnlichkeiten mit Bewegungsformen von Teilchen, die einfachen physikalischen Gesetzen folgen.

Drei Prinzipien spielen dabei eine Hauptrolle, welche ebenso einfach wie allgemeingültig sind: Bleib stets bei der Gruppe, vermeide Zusammenstöße (ein Platz kann eh nur von einem Teilchen eingenommen werden), und beweg dich in dieselbe Richtung wie deine Nachbarn, wie Prof. Aronson mit Beispielen erläuterte.

Menschen ahmen nach, werden von Nachbarn beeinflusst und folgen Trends in der Mode oder auf Finanzmärkten. Dieses schwarmähnliche Verhalten weckt ebenfalls die forschende Neugier von Physikern. Bei näherer Betrachtung entdecken Wissenschaftler allerdings, dass jede Schwarmsorte oder jedes System mit Ordnungssinn in der Natur zusätzlichen eigenen Regeln folgt.

Die elementaren Prinzipien stecken in unterschiedlichen Variationen hinter vielen geordneten Bewegungen in der Natur. Weitere Beispiele sind auch die Bildung von Schäfchenwolken, von Wirbeln und Walzen in Flüssen, aber auch bei Magmaströmen im Erdinneren. Der Ordnungssinn in der Natur fasziniert aus vielerlei Gründen die Naturforscher und ist auch Thema des Forschungsschwerpunktes "Nichlineare Dynamik" an der Universität Bayreuth.
Der Ordnungssinn ist in jedem spezifischen System etwas anders ausgeprägt. Prof. Aronson erläuterte am Beispiel faszinierender und schöner Spiralenmuster, die in so unterschiedlichen Systemen, wie bei Schleimpilzen, bei chemischen Reaktionen oder bei Erregungswellen auf einem Herz auftreten, aber dabei doch ähnlichen Gesetzmäßigkeiten folgen.

Mit einem Lifeexperiment führte Prof. Aronson das Schwarmverhalten magnetischer Teilchen vor. Er zeigte, wie in Wasser gelöste Mikroteilchen aus Nickel auf ein Magnetfeld reagieren, wobei das Magnetfeld mit einer Frequenz von 30 bis 100 Hertz seine Richtung ändert. Sind die Teilchen bei Abwesenheit des Magnetfeldes auf möglichst großen Abstand bedacht, so ordnen sie sich im periodischen Magnetfeld zu einem schlangenförmigen Schwarm. Die Arbeitsgruppe war bei der Entdeckung dieses Selbstorganisationsphänomens ziemlich überrascht.

Bei genauerer Betrachtung besteht diese magnetische Schlange aus vielen kleinen Stabmagneten, welche sich im Magnetfeld durch Aneinanderreihung aus vielen kleinen Teilchen formen. Faszinierend an diesen Magnetschlangen ist auch deren Schwimmverhalten, was denen von Mikroorganismen ähnlich ist. Sie verhalten sich sonst in mehreren Aspekten wie Mikroorganismen, in dem sie beispielsweise Jagd auf andere Teilchen machen.

Magnetschlangen können in einer Sekunde mehr als das fünffache Ihrer eigenen Länge zurücklegen. Der mehrfache Olympiasieger Michael Phleps würde bei dieser Schwimmeffizenz vor Neid erblassen, so Prof. Aronson.

Prof. Aronson war mit seiner Arbeitsgruppe nicht auf der Suche nach Magnetschlangen. Sie wollten die physikalischen Gesetzmäßigkeiten erforschen, nach denen die im Wasser gelösten Magnetteilchen im periodischen Magnetfeld miteinander wechselwirken. Aber Entdeckungen erfolgen selten nach einem vorgefassten Plan. Sie sind das Produkt systematischen und neugierigen Forschens, so Prof. W. Zimmermann. Diese Überraschungseffekte sind Teil der Faszination von Forschung, die unsere Diplomanden und Doktoranden in unseren Labors miterleben können und als Erfahrung ins Berufsleben mitnehmen.

Mit diesen schlangenförmigen Schwärmen aus magnetischen Teilchen lassen sich nun elementare Prinzipien von Schwarmverhalten systematischer untersuchen. denn diese Teilchenschwärme sind im Gegensatz zu Fisch-, Vogel oder Bakterienschwärmen im Labor kontrollierbar. Mit ihnen kann man auch Langzeitexperimente durchführen, denn es gibt bei diesen Teilchenschwärmen kein Futterproblem, können diese Magnetteilchen doch fast beliebig lange durch ein periodisches Magnetfeld angetrieben werden.

Schafft man es, Magnetschlagen während ihrer Schwimmbewegung festzuhalten, so agieren sie wie kleine Mikropumpen auf die umgebende Flüssigkeit. Wie sich diese inzwischen patentierten Eigenschaften von Magnetschlagen in der Biotechnologie einsetzen lassen und wie man aus geordneten magnetischen Teilchen in Zukunft neue Speichermedien macht, wird viele Forscher weiter beschäftigen.

Jürgen Abel | idw
Weitere Informationen:
http://www.uni-bayreuth.de/

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Planeten außerhalb unseres Sonnensystems: Bayreuther Forscher dringen tief ins Weltall vor
23.02.2017 | Universität Bayreuth

nachricht Kühler Zwerg und die sieben Planeten
23.02.2017 | ESO Science Outreach Network - Haus der Astronomie

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: „Vernetzte Autonome Systeme“ von acatech und DFKI auf der CeBIT

Auf der IT-Messe CeBIT vom 20. bis 24. März präsentieren acatech – Deutsche Akademie der Technikwissenschaften und das Deutsche Forschungszentrum für Künstliche Intelligenz (DFKI) in Kooperation mit der Deutschen Messe AG vernetzte Autonome Systeme. In Halle 12 am Stand B 63 erwarten die Besucherinnen und Besucher unter anderem Roboter, die Hand in Hand mit Menschen zusammenarbeiten oder die selbstständig gefährliche Umgebungen erkunden.

Auf der IT-Messe CeBIT vom 20. bis 24. März präsentieren acatech – Deutsche Akademie der Technikwissenschaften und das Deutsche Forschungszentrum für...

Im Focus: Kühler Zwerg und die sieben Planeten

Erdgroße Planeten mit gemäßigtem Klima in System mit ungewöhnlich vielen Planeten entdeckt

In einer Entfernung von nur 40 Lichtjahren haben Astronomen ein System aus sieben erdgroßen Planeten entdeckt. Alle Planeten wurden unter Verwendung von boden-...

Im Focus: Mehr Sicherheit für Flugzeuge

Zwei Entwicklungen am Lehrgebiet Rechnerarchitektur der FernUniversität in Hagen können das Fliegen sicherer machen: ein Flugassistenzsystem, das bei einem totalen Triebwerksausfall zum Einsatz kommt, um den Piloten ein sicheres Gleiten zu einem Notlandeplatz zu ermöglichen, und ein Assistenzsystem für Segelflieger, das ihnen das Erreichen größerer Höhen erleichtert. Präsentiert werden sie von Prof. Dr.-Ing. Wolfram Schiffmann auf der Internationalen Fachmesse für Allgemeine Luftfahrt AERO vom 5. bis 8. April in Friedrichshafen.

Zwei Entwicklungen am Lehrgebiet Rechnerarchitektur der FernUniversität in Hagen können das Fliegen sicherer machen: ein Flugassistenzsystem, das bei einem...

Im Focus: HIGH-TOOL unterstützt Verkehrsplanung in Europa

Forschung am Karlsruher Institut für Technologie (KIT) unterstützt die Europäische Kommission bei der Verkehrsplanung: Anhand des neuen Modells HIGH-TOOL lässt sich bewerten, wie verkehrspolitische Maßnahmen langfristig auf Wirtschaft, Gesellschaft und Umwelt wirken. HIGH-TOOL ist ein frei zugängliches Modell mit Modulen für Demografie, Wirtschaft und Ressourcen, Fahrzeugbestand, Nachfrage im Personen- und Güterverkehr sowie Umwelt und Sicherheit. An dem nun erfolgreich abgeschlossenen EU-Projekt unter der Koordination des KIT waren acht Partner aus fünf Ländern beteiligt.

Forschung am Karlsruher Institut für Technologie (KIT) unterstützt die Europäische Kommission bei der Verkehrsplanung: Anhand des neuen Modells HIGH-TOOL lässt...

Im Focus: Zinn in der Photodiode: nächster Schritt zur optischen On-Chip-Datenübertragung

Schon lange suchen Wissenschaftler nach einer geeigneten Lösung, um optische Komponenten auf einem Computerchip zu integrieren. Doch Silizium und Germanium allein – die stoffliche Basis der Chip-Produktion – sind als Lichtquelle kaum geeignet. Jülicher Physiker haben nun gemeinsam mit internationalen Partnern eine Diode vorgestellt, die neben Silizium und Germanium zusätzlich Zinn enthält, um die optischen Eigenschaften zu verbessern. Das Besondere daran: Da alle Elemente der vierten Hauptgruppe angehören, sind sie mit der bestehenden Silizium-Technologie voll kompatibel.

Schon lange suchen Wissenschaftler nach einer geeigneten Lösung, um optische Komponenten auf einem Computerchip zu integrieren. Doch Silizium und Germanium...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Österreich erzeugt erstmals Erdgas aus Sonnen- und Windenergie

24.02.2017 | Veranstaltungen

Big Data Centrum Ostbayern-Südböhmen startet Veranstaltungsreihe

23.02.2017 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - April 2017

23.02.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Österreich erzeugt erstmals Erdgas aus Sonnen- und Windenergie

24.02.2017 | Veranstaltungsnachrichten

Sechs Bundesländer erproben Online-Schultests der Uni Jena

24.02.2017 | Bildung Wissenschaft

Stachellose Bienen lassen Nester von Soldatinnen verteidigen

24.02.2017 | Biowissenschaften Chemie