Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Fälschungssicher durch einzigartige Reflexionsmuster

15.06.2016

Utl.: Neue Technologie zum Schutz vor Markenpiraterie

Sicherheitsdefizite unserer Gesellschaft haben viele Facetten: Produkte werden gefälscht, Karten geklont und Fingerabdrücke gestohlen: Bislang hat sich noch keine Authentifizierung als "narrensicher" erwiesen.


Farbmuster der Reflexionen, die von einer Anordnung von Mikrokugeln ausgelöst wird - ein solches farbliches Muster stellt ein unverwechselbares Merkmal dar.

Copyright: Yong Geng, Universität Luxembourg

Ein internationales ForscherInnenteam unter Beteiligung von Romano Rupp von der Fakultät für Physik der Universität Wien hat neuartige Sicherheitselemente aus mikroskopisch kleinen Kügelchen aus Flüssigkristallen entwickelt. Diese haben einzigartige Reflexionsmuster, die unkopierbar, aber dennoch robust sind. Details über diese neue zukunftsweisende Technologie sind im renommierten Fachmagazin Scientific Reports erschienen.

In der globalisierten und miteinander vernetzten Welt hängt nicht nur die nationale Sicherheit, sondern auch das Vertrauen der Gesellschaft in die Zuverlässigkeit der Akteure in Industrie, Handel und Gewerbe von der Möglichkeit ab, Personen und Waren fälschungs- und betrugssicher identifizieren zu können.

So ist es in unserer Zeit unumgänglich, dass Hochsicherheitsbereiche durch Kontrolle von Zutrittsausweisen gesichert werden oder dass der Zugang zu persönlichen Daten, wie sie z.B. auf mobilen elektronischen Medien gespeichert sind, durch biometrische Prüfmethoden kontrolliert wird.

Ein internationales Team von WissenschafterInnen hat nun eine Methode entwickelt, mit der einzigartige reflektierende Muster erzeugt werden können. Die neuartigen Sicherheitselemente wurden von Gabriele Lenzini und Jan Lagerwall von der Universität Luxembourg entwickelt.

"Diese Elemente bestehen aus mikroskopisch kleinen Kugeln aus cholesterischen Flüssigkristallen, die sich selbständig zu charakteristischen Strukturen anordnen. Sie lassen sich kostengünstig herstellen, leicht auf ihre Authentizität überprüfen und können praktisch weder geklont noch kopiert werden. Sie eignen sich daher in idealer Weise für den Schutz wertvoller Markenprodukte", erklärt Romano Rupp.

Irena Drevensek-Olenik von der Universität Ljubljana und Romano Rupp haben zur Aufklärung der ungewöhnlichen optischen Eigenschaften dieser Strukturen beitragen können. "Ähnlich wie man es von Schmetterlingsflügeln her kennt, zeigen sie unter Beleuchtung ein im Detail einzigartiges Reflexionsmuster. Es lässt sich darauf zurückführen, dass die Kugeln in unerwarteter Weise optisch miteinander kommunizieren", beschreibt Rupp die Beschaffenheit der Flüssigkristalle. Sie rufen ein farbenfrohes Muster hervor, das sich in einzigartiger Weise dynamisch mit der Beleuchtungsrichtung verändert und dadurch ein unverwechselbares Sicherheitsmerkmal darstellt.

"Aufgrund der Zufälligkeit, mit der sich die verschiedenen Typen solcher mikrofluidisch erzeugter cholesterischer Kugeln zusammenfügen, ergibt sich eine im Verhältnis zum Aufwand praktisch unkopierbare und unklonbare Prägung", so der Materialforscher. Dieser Kopierschutz ist robust genug, dass er leicht zu handhaben ist, aber auch empfindlich genug, dass jeder Versuch, ihn zu manipulieren, leicht erkannt werden kann. Das Einsatzfeld für diese neue Technologie ist daher weitgefächert und hat großes Potenzial.

Publikation in "Scientific Reports"
Yong Geng, JungHyun Noh, Irena Drevensek-Olenik, Romano Rupp, Gabriele Lenzini & Jan P. F. Lagerwall: "High-fidelity spherical cholesteric liquid crystal Bragg reflectors generating unclonable patterns for secure authentication", Scientific Reports online 27. Mai 2016.
http://www.nature.com/articles/srep26840
Doi: 10.1038/srep26840

Wissenschaftlicher Kontakt
Univ.-Prof. Dr. Romano Rupp
Physik Funktioneller Materialien
Universität Wien
1090 Wien, Strudlhofgasse 4
T +43-1-4277-727 05
M +43-664-602 77-727 05
romano.rupp@univie.ac.at

Rückfragehinweis
Mag. Alexandra Frey
Pressebüro der Universität Wien
Forschung und Lehre
1010 Wien, Universitätsring 1
T +43-1-4277-175 33
M +43-664-602 77-175 33
alexandra.frey@univie.ac.at

Offen für Neues. Seit 1365.
Die Universität Wien ist eine der ältesten und größten Universitäten Europas: An 19 Fakultäten und Zentren arbeiten rund 9.600 MitarbeiterInnen, davon 6.800 WissenschafterInnen. Die Universität Wien ist damit die größte Forschungsinstitution Österreichs sowie die größte Bildungsstätte: An der Universität Wien sind derzeit rund 93.000 nationale und internationale Studierende inskribiert. Mit über 180 Studien verfügt sie über das vielfältigste Studienangebot des Landes. Die Universität Wien ist auch eine bedeutende Einrichtung für Weiterbildung in Österreich. http://www.univie.ac.at

Stephan Brodicky | Universität Wien

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Neuartige Halbleiter-Membran-Laser
22.03.2017 | Universität Stuttgart

nachricht Seltene Erden: Wasserabweisend erst durch Altern
22.03.2017 | Universität Basel

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Gigantische Magnetfelder im Universum

Astronomen aus Bonn und Tautenburg in Thüringen beobachteten mit dem 100-m-Radioteleskop Effelsberg Galaxienhaufen, das sind Ansammlungen von Sternsystemen, heißem Gas und geladenen Teilchen. An den Rändern dieser Galaxienhaufen fanden sie außergewöhnlich geordnete Magnetfelder, die sich über viele Millionen Lichtjahre erstrecken. Sie stellen die größten bekannten Magnetfelder im Universum dar.

Die Ergebnisse werden am 22. März in der Fachzeitschrift „Astronomy & Astrophysics“ veröffentlicht.

Galaxienhaufen sind die größten gravitativ gebundenen Strukturen im Universum, mit einer Ausdehnung von etwa zehn Millionen Lichtjahren. Im Vergleich dazu ist...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Auf der Spur des linearen Ubiquitins

Eine neue Methode ermöglicht es, den Geheimcode linearer Ubiquitin-Ketten zu entschlüsseln. Forscher der Goethe-Universität berichten darüber in der aktuellen Ausgabe von "nature methods", zusammen mit Partnern der Universität Tübingen, der Queen Mary University und des Francis Crick Institute in London.

Ubiquitin ist ein kleines Molekül, das im Körper an andere Proteine angehängt wird und so deren Funktion kontrollieren und verändern kann. Die Anheftung...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Physiker erzeugen gezielt Elektronenwirbel

Einem Team um den Oldenburger Experimentalphysiker Prof. Dr. Matthias Wollenhaupt ist es mithilfe ultrakurzer Laserpulse gelungen, gezielt Elektronenwirbel zu erzeugen und diese dreidimensional abzubilden. Damit haben sie einen komplexen physikalischen Vorgang steuern können: die sogenannte Photoionisation oder Ladungstrennung. Diese gilt als entscheidender Schritt bei der Umwandlung von Licht in elektrischen Strom, beispielsweise in Solarzellen. Die Ergebnisse ihrer experimentellen Arbeit haben die Grundlagenforscher kürzlich in der renommierten Fachzeitschrift „Physical Review Letters“ veröffentlicht.

Das Umwandeln von Licht in elektrischen Strom ist ein ultraschneller Vorgang, dessen Details erstmals Albert Einstein in seinen Studien zum photoelektrischen...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Die „Panama Papers“ aus Programmierersicht

22.03.2017 | Veranstaltungen

Über Raum, Zeit und Materie

22.03.2017 | Veranstaltungen

Unter der Haut

22.03.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Die „Panama Papers“ aus Programmierersicht

22.03.2017 | Veranstaltungsnachrichten

Neues Schiff für die Fischerei- und Meeresforschung

22.03.2017 | Biowissenschaften Chemie

Mit voller Kraft auf Erregerjagd

22.03.2017 | Biowissenschaften Chemie