Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Extrem kurze und dichte Elektronenpulse für neuartige Röntgenquellen

16.03.2010
Seit einigen Jahren wird an kompakten Röntgenlasern geforscht, für die man keine großen Teilchenbeschleuniger mehr braucht. Sie nutzen intensives Laserlicht zur Beschleunigung von Elektronen und erfordern ultrakurze und besonders dichte Elektronenpulse.

Im Rahmen einer internationalen Kooperation unter Beteiligung von Wissenschaftlern aus dem Forschungszentrum Dresden-Rossendorf (FZD) wurde die Dauer solcher Elektronenpulse nun genau bestimmt und damit die Forschung auf diesem Gebiet auf ein solides Fundament gestellt. Die Ergebnisse erschienen kürzlich in der Fachzeitschrift "Physical Review Letters".

Kleine, kompakte Lichtquellen, die quasi auf einen Labortisch passen und dabei kostengünstig sind - davon träumen nicht nur viele Physiker an Universitäten und Forschungseinrichtungen. Um brillante Röntgenstrahlung zu erzeugen, die geeignet ist, immer tiefer in die Welt der Zellen, Atome und Moleküle einzudringen, müssen Elektronen auf hohe Energien beschleunigt werden. Dazu sind bisher nur modernste Röntgenlaser mit riesigen Teilchenbeschleunigern, wie der "LCLS" im amerikanischen Stanford oder die europäische Röntgenquelle "XFEL", die gegenwärtig am Deutschen Elektronen-Synchrotron DESY in Hamburg entsteht, in der Lage. Sie erzeugen Röntgenblitze mit Eigenschaften, die man sonst nur von Laserlicht kennt, und unterscheiden sich damit von der Röntgenstrahlung, die z.B. Ärzte einsetzen. Ein hervorstechendes Merkmal ist die Kohärenz, d.h. die Wellenberge- und -täler der Röntgenstrahlung stimmen auf einer sehr kurzen zeitlichen Skala überein.

Eine kompakte Alternative zur Erzeugung brillanter Röntgenstrahlung, an der seit Jahren intensiv geforscht wird, ist der Einsatz von Laserlicht: ein sehr starker und ultrakurzer Laserpuls kann Elektronen auf ebenso hohe Energien beschleunigen wie große Beschleunigeranlagen. Allerdings gründete sich die Entwicklung solcher neuen, lasergetriebenen Röntgenquellen bisher nur auf die Annahme der Forscher, dass die entstehenden Elektronenpulse extrem kurz sind - zugleich aber eine essenzielle Voraussetzung für den Erfolg dieser neuen Technologie.

Dass die Wissenschaft bei der Entwicklung neuartiger Röntgenquellen auf dem richtigen Weg ist, hat nun Alexander Debus vom Forschungszentrum Dresden-Rossendorf (FZD) bestätigt. Mithilfe experimenteller Daten, die vor einigen Jahren in Kooperation deutscher und britischer Forscher* am ASTRA-Laser im Rutherford Appleton Laboratory in Rutherford/England entstanden, rekonstruierte er durch Computersimulationen die Eigenschaften eines laserbeschleunigten Elektronenpulses. Er konnte bestimmen, dass ein Elektronenpuls ca. 30 Femtosekunden (1 Femtosekunde = 1 Billiardstel Sekunde) dauert. Demnach werden die Elektronenpulse tatsächlich extrem kurz - kürzer als ein Laserpuls, der bei den Experimenten 45 Femtosekunden lang war. "Dieses Ergebnis ist ein stabiles Fundament für die Entwicklung neuer Lichtquellen für Röntgenstrahlung, die extrem kurze Elektronenpulse mit einer hohen Ladung, also einer großen Anzahl von Elektronen, benötigen, um zu funktionieren", so Dr. Michael Bussmann vom FZD.

Die Elektronenpulse entstehen, wenn ein ultrakurzer, intensiver Laserpuls auf ein Gas trifft. Der Laserpuls ist stark genug, um ein Plasma zu erzeugen, also die Elektronen von den Gasatomen zu trennen. Hinter dem Laserpuls entsteht eine Plasmawelle, die ihm mit fast Lichtgeschwindigkeit folgt. Auf dieser Welle können die Elektronen reiten wie ein Surfer auf einer Meereswelle. Sie werden dadurch auf hohe Energien beschleunigt.

Am FZD wird es bald möglich sein, sowohl laserbeschleunigte Elektronenpulse, die am Hochleistungslaser "Draco" entstehen, als auch Elektronen aus der Strahlungsquelle ELBE zu nutzen, um daraus Röntgenstrahlung zu erzeugen. Dazu müssen die Elektronenpakete mit einem starken Laserpuls bestrahlt werden. Sie werden dadurch zum Schwingen gebracht und senden Röntgenstrahlung aus. Neuartige laserbeschleunigte Röntgenquellen könnten laut FZD-Wissenschaftler Michael Bussmann wesentlich kleiner sein als die bisherigen Anlagen, weil sich die zur Erzeugung der Röntgenstrahlung nötigen Strecken erheblich verkürzen.

*Die Experimente am ASTRA-Laser erfolgten in Kooperation folgender Einrichtungen: FZD, University of Oxford, Max-Planck-Institut für Quantenoptik, Ludwig-Maximilians-Universität München, Imperial College London, STFC Daresbury Laboratory, University of Strathclyde, Friedrich-Schiller-Universität Jena, Heinrich-Heine-Universität Düsseldorf, STFC Rutherford Appleton Laboratory.

Publikation
"Electron Bunch Length Measurements from Laser-Accelerated Electrons Using Single-Shot THz Time-Domain Interferometry", A. D. Debus(1),*, M. Bussmann(1), U. Schramm(1), R. Sauerbrey(1), C. D. Murphy(2), Zs. Major(3,4), R. Hörlein(3,4), L. Veisz(3), K. Schmid(3), J. Schreiber(3,4,5), K. Witte(4), S. P. Jamison(6), J. G. Gallacher(7), D. A. Jaroszynski(7), M. C. Kaluza(8), B. Hidding(9), S. Kiselev(9), R. Heathcote(10), P. S. Foster(10), D. Neely(10), E. J. Divall(10), C. J. Hooker(10), J. M. Smith(10), K. Ertel(10), A. J. Langley(10), P. Norreys(10), J. L. Collier(10), and S. Karsch(3,4),*, Phys. Rev. Lett. 104, 084802 (2010)

DOI: 10.1103/PhysRevLett.104.084802

(1)Forschungzentrum Dresden-Rossendorf
(2)Clarendon Laboratory, University of Oxford
(3)Max-Planck-Institut für Quantenoptik
(4)Ludwig-Maximilians-Universität München
(5)The Blackett Laboratory, Imperial College London
(6)Accelerator Science and Technology Centre, STFC Daresbury Laboratory
(7)University of Strathclyde
(8)Friedrich-Schiller-Universität Jena
(9)Heinrich-Heine-Universität Düsseldorf
(10)Central Laser Facility, STFC Rutherford Appleton Laboratory
Weitere Informationen
Alexander Debus / Dr. Michael Bussmann
Institut für Strahlenphysik
Tel.: 0351 260 - 2619 / 2616
E-Mail: a.debus@fzd.de / m.bussmann@fzd.de
Pressekontakt
Dr. Christine Bohnet
Forschungszentrum Dresden-Rossendorf (FZD)
Presse- und Öffentlichkeitsarbeit
Bautzner Landstr. 400 | 01328 Dresden
Tel.: 0351 260 - 2450 | 0160 969 288 56 | presse@fzd.de
Das FZD im Überblick
Das Forschungszentrum Dresden-Rossendorf (FZD) hat das Ziel, strategisch und langfristig ausgerichtete Spitzenforschung in politisch und gesellschaftlich relevanten Forschungsthemen wie Energie, Gesundheit, Struktur der Materie und Schlüsseltechnologien zu leisten. Folgende Fragestellungen stehen dabei im Mittelpunkt:
- Wie verhält sich Materie unter dem Einfluss hoher Felder und in kleinsten Dimensionen?
- Wie können Tumorerkrankungen frühzeitig erkannt und wirksam behandelt werden?
- Wie schützt man Mensch und Umwelt vor technischen Risiken?
Diese Fragestellungen werden in strategischen Kooperationen mit Forschungs- und Industriepartnern bearbeitet. Ein weiterer Schwerpunkt ist der Betrieb von sechs einmaligen Großgeräten, die auch externen Nutzern zur Verfügung stehen.

Das FZD wird als Mitglied der Leibniz-Gemeinschaft von Bund und Land gefördert, verfügt über ein Budget von mehr als 70 Mio. Euro (2008) und beschäftigt rund 800 Personen. Anfang 2011 wird das FZD in die Helmholtz-Gemeinschaft Deutscher Forschungszentren wechseln.

Dr. Christine Bohnet | idw
Weitere Informationen:
http://www.fzd.de/

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Proteintransport - Stau in der Zelle
24.03.2017 | Ludwig-Maximilians-Universität München

nachricht Neuartige Halbleiter-Membran-Laser
22.03.2017 | Universität Stuttgart

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Wegweisende Erkenntnisse für die Biomedizin: NAD⁺ hilft bei Reparatur geschädigter Erbinformationen

Eine internationale Forschergruppe mit dem Bayreuther Biochemiker Prof. Dr. Clemens Steegborn präsentiert in 'Science' neue, für die Biomedizin wegweisende Forschungsergebnisse zur Rolle des Moleküls NAD⁺ bei der Korrektur von Schäden am Erbgut.

Die Zellen von Menschen und Tieren können Schäden an der DNA, dem Träger der Erbinformation, bis zu einem gewissen Umfang selbst reparieren. Diese Fähigkeit...

Im Focus: Designer-Proteine falten DNA

Florian Praetorius und Prof. Hendrik Dietz von der Technischen Universität München (TUM) haben eine neue Methode entwickelt, mit deren Hilfe sie definierte Hybrid-Strukturen aus DNA und Proteinen aufbauen können. Die Methode eröffnet Möglichkeiten für die zellbiologische Grundlagenforschung und für die Anwendung in Medizin und Biotechnologie.

Desoxyribonukleinsäure – besser bekannt unter der englischen Abkürzung DNA – ist die Trägerin unserer Erbinformation. Für Prof. Hendrik Dietz und Florian...

Im Focus: Fliegende Intensivstationen: Ultraschallgeräte in Rettungshubschraubern können Leben retten

Etwa 21 Millionen Menschen treffen jährlich in deutschen Notaufnahmen ein. Im Kampf zwischen Leben und Tod zählt für diese Patienten jede Minute. Wenn sie schon kurz nach dem Unfall zielgerichtet behandelt werden können, verbessern sich ihre Überlebenschancen erheblich. Damit Notfallmediziner in solchen Fällen schnell die richtige Diagnose stellen können, kommen in den Rettungshubschraubern der DRF Luftrettung und zunehmend auch in Notarzteinsatzfahrzeugen mobile Ultraschallgeräte zum Einsatz. Experten der Deutschen Gesellschaft für Ultraschall in der Medizin e.V. (DEGUM) schulen die Notärzte und Rettungsassistenten.

Mit mobilen Ultraschallgeräten können Notärzte beispielsweise innere Blutungen direkt am Unfallort identifizieren und sie bei Bedarf auch für Untersuchungen im...

Im Focus: Gigantische Magnetfelder im Universum

Astronomen aus Bonn und Tautenburg in Thüringen beobachteten mit dem 100-m-Radioteleskop Effelsberg Galaxienhaufen, das sind Ansammlungen von Sternsystemen, heißem Gas und geladenen Teilchen. An den Rändern dieser Galaxienhaufen fanden sie außergewöhnlich geordnete Magnetfelder, die sich über viele Millionen Lichtjahre erstrecken. Sie stellen die größten bekannten Magnetfelder im Universum dar.

Die Ergebnisse werden am 22. März in der Fachzeitschrift „Astronomy & Astrophysics“ veröffentlicht.

Galaxienhaufen sind die größten gravitativ gebundenen Strukturen im Universum, mit einer Ausdehnung von etwa zehn Millionen Lichtjahren. Im Vergleich dazu ist...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Rund 500 Fachleute aus Wissenschaft und Wirtschaft diskutierten über technologische Zukunftsthemen

24.03.2017 | Veranstaltungen

Lebenswichtige Lebensmittelchemie

23.03.2017 | Veranstaltungen

Die „Panama Papers“ aus Programmierersicht

22.03.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Rund 500 Fachleute aus Wissenschaft und Wirtschaft diskutierten über technologische Zukunftsthemen

24.03.2017 | Veranstaltungsnachrichten

Förderung des Instituts für Lasertechnik und Messtechnik in Ulm mit rund 1,63 Millionen Euro

24.03.2017 | Förderungen Preise

TU-Bauingenieure koordinieren EU-Projekt zu Recycling-Beton von über sieben Millionen Euro

24.03.2017 | Förderungen Preise