Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Extrem energiereiche Lichtteilchen vom Krebspulsar entdeckt

13.01.2016

Der Krebspulsar stellt einen neuen Rekord auf: Der Neutronenstern im Krebsnebel sendet die energiereichste Lichtstrahlung aus, die je an einem Stern gemessen wurde. Diese Beobachtung könnte unser heutiges Verständnis von Pulsaren in Frage stellen. Außerdem gibt es offenbar einen neuen, bisher wenig verstandenen Mechanismus, der die Teilchen auf derart hohe Energien beschleunigt. Die Erkenntnisse wurden von einem Forschungsteam am MAGIC-Teleskop im Astronomy and Astrophysics Magazine veröffentlicht.

Extrem energiereiche Lichtteilchen vom Krebspulsar entdeckt – Beobachtungen stellen alle bisherigen Messungen in den Schatten


Die Teilchen vom Krebspulsar könnten in den grün und blau markierten Regionen auf höchste Energien beschleunigt werden. Grün: Bereich nahe am Magnetfeld. Blaue Region: 100.000 km vom Pulsar entfernt.

Patricia Carcelén Marco

Der Krebspulsar stellt einen neuen Rekord auf: Der Neutronenstern im Krebsnebel sendet die energiereichste Lichtstrahlung aus, die je an einem Stern gemessen wurde. Diese Beobachtung könnte unser heutiges Verständnis von Pulsaren in Frage stellen. Außerdem gibt es offenbar einen neuen, bisher wenig verstandenen Mechanismus, der die Teilchen auf derart hohe Energien beschleunigt. Die Erkenntnisse wurden von einem Forschungsteam am MAGIC-Teleskop im Astronomy and Astrophysics Magazine veröffentlicht.

Der Krebspulsar ist der Überrest einer Supernova-Explosion aus dem Jahr 1054. Der Neutronenstern hat einen Durchmesser von nur ungefähr 10 Kilometern und rotiert etwa 30 Mal pro Sekunde um die eigene Achse. Wie ein Leuchtturm sendet er dabei Lichtpulse aus, die sich über das gesamte elektromagnetische Spektrum erstecken – von langen Radiowellen über sichtbares Licht bis hin zu kurzwelligen, energiereichen Gammastrahlen.

Magnetfelder: Motor für Lichtenergie

Mit Hilfe des MAGIC-Teleskops haben Wissenschaftlerinnen und Wissenschaftler Photonen, also Lichtteilchen entdeckt, deren Energie um ein Vielfaches höher liegt als bisher beobachtet. Bis vor wenigen Jahren ging man davon aus, dass die höchste Energie am Krebspulsar bei 6 GeV (Gigalektronenvolt) liegt.

Im Jahr 2008 registrierte das MAGIC-Teleskop ein Energiespektrum von über 25 GeV. 2012 übertrumpfte das Observatorium sein eigenes Ergebnis mit Messungen von 400 GeV. Inzwischen hat MAGIC Gammastrahlen bis zu 1,5 TeV (Teraelektronenvolt) gemessen. Allerdings können die Forscher noch nicht erklären, wie die geladenen Teilchen auf die extrem hohen Energien beschleunigt werden.

"Bei der Erzeugung energiereicher Teilchen spielt das für Neutronensterne enorm starke Magnetfeld eine zentrale Rolle, das seinerseits extrem starke elektrische Felder erzeugt", sagt Razmik Mirzoyan, Sprecher des MAGIC-Kollaboration und Projektleiter am Max-Planck-Institut für Physik. "In der magnetisch geladenen, komplexen Atmosphäre des Neutronensterns werden Elektronen und ihre Antiteilchen, die Positronen, auf nahezu Lichtgeschwindigkeit beschleunigt, bevor sie zerstrahlen.

In diesem Modell lassen sich Gammastrahlenergien bis zu wenigen Gigaelektronenvolt als Synchrotron- und Krümmungsstrahlung erklären. Für die jetzt beobachteten Gammapulse von über 1,5 TeV muss es aber einen anderen Mechanismus geben.

Wo am Neutronenstern entsteht die hochenergetische Strahlung?

"Wir können extrem energiereiche Gammastrahlen nur dann beobachten, wenn es diesen Elektronen irgendwie gelingt, der komplexen Topologie des Magnetfeldes am Neutronenstern zu entkommen und sich im elektrischen Feld zu beschleunigen", erläutert Mirzoyan. "Dann bilden sie zusammen mit den energieschwächeren Radiowellen und Röntgenstrahlen den Lichtkegel des Pulsars."

Für die "Flucht" der Gammastrahlen kommt ein indirekter Weg in Frage: Dabei werden nicht die direkt vom Pulsar ausgehenden Elektronen und Positronen gestreut, sondern ihre beschleunigten Abkömmlinge der zweiten oder dritten Generation. Diese entstehen am äußersten Rand des Magnetfeldes in etwa 1.500 Kilometern Höhe.

Vereinfacht gesagt, wechselwirken hier energiereiche geladene Teilchen mit UV- und Röntgenstrahlen sowie dem Magnetfeld. Anschließend übertragen die sekundären Teilchen ihre Energie auf niedrigenergetische Photonen und machen sie damit zu energiereichen Gammaquanten – die das Magnetfeld verlassen. Diese Energieübertragung bezeichnet man als inversen Compton- Mechanismus.

Mittels inversem Compton-Effekt könnten sich Gammaphotonen auch im Pulsarwind, weit vom Pulsar entfernt, bilden – wo die beschleunigte Teilchen ebenfalls auf Röntgenstrahlen treffen können.

Allerdings kommt die extreme Gammastrahlung exakt zur gleichen Zeit am MAGIC-Teleskop an wie energieärmere Radiowellen oder Röntgenstrahlen – von denen man weiß, dass sie im Inneren des Magnetfelds entstehen.

"Das würde bedeuten, dass die gesamte Strahlung in einer relativ kleinen Region am Rand des Magnetfeldes produziert wird oder die energiereiche Gammastrahlung eine Art 'Erinnerung' an Strahlung niedrigerer Energie behält. Zum heutigen Zeitpunkt kann man annehmen, dass der inverse Compton-Mechanismus die Existenz derart energiereicher Gammastrahlen am Pulsar erklären kann. Langfristig brauchen wir aber neue, detaillierte theoretische Modelle, die das Phänomen beschreiben", so Mirzoyan abschließend.

Für die jetzt veröffentlichten Ergebnisse haben die MAGIC beteiligten Wissenschaftler 320 Beobachtungsstunden zwischen Oktober 2007 und April 2014 ausgewertet.

Publikation:

Teraelectron pulsed emission from the Crab pulsar detected by MAGIC, Astronomy & Astrophysics, Volume 585 (Januray 2016), http://www.aanda.org/articles/aa/abs/2016/01/aa26853-15/aa26853-15.html

Mehr Informationen:

Krebsnebel-Pulsar: it's Magic! http://www.pro-physik.de/details/news/1693345/Krebsnebel-Pulsar_its_Magic.html
Die MAGIC-Teleskope (Video): https://www.mpp.mpg.de/medienarchiv/extern/Videos/Forschung/MAGIC/EyesForTheExtr...
Webseite der MAGIC-Kollaboration https://magic.mpp.mpg.de/
Steckbrief Krebsnebel https://de.wikipedia.org/wiki/Krebsnebel

Kontakt:
Dr. Razmik Mirzoyan
Max-Planck-Institut für Physik
+49 89 32354-328
razmik.mirzoyan@mpp.mpg.de
https://www.mpp.mpg.de/forschung/experimental/magic/index.html

Weitere Informationen:

https://www.mpp.mpg.de/pr/medienarchiv/03_print/pressemeldungen/pressemeldungen2...
http://www.pro-physik.de/details/news/1693345/Krebsnebel-Pulsar_its_Magic.html
https://www.mpp.mpg.de/medienarchiv/extern/Videos/Forschung/MAGIC/EyesForTheExtr...
https://magic.mpp.mpg.de/
https://de.wikipedia.org/wiki/Krebsnebel

Barbara Wankerl | Max-Planck-Institut für Physik

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Ultrakalte chemische Prozesse: Physikern gelingt beispiellose Vermessung auf Quantenniveau
17.11.2017 | Universität Ulm

nachricht Zwei verdächtigte Sterne unschuldig an mysteriösem Antiteilchen-Überschuss
17.11.2017 | Max-Planck-Institut für Kernphysik

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Ultrakalte chemische Prozesse: Physikern gelingt beispiellose Vermessung auf Quantenniveau

Wissenschaftler um den Ulmer Physikprofessor Johannes Hecker Denschlag haben chemische Prozesse mit einer beispiellosen Auflösung auf Quantenniveau vermessen. Bei ihrer wissenschaftlichen Arbeit kombinierten die Forscher Theorie und Experiment und können so erstmals die Produktzustandsverteilung über alle Quantenzustände hinweg - unmittelbar nach der Molekülbildung - nachvollziehen. Die Forscher haben ihre Erkenntnisse in der renommierten Fachzeitschrift "Science" publiziert. Durch die Ergebnisse wird ein tieferes Verständnis zunehmend komplexer chemischer Reaktionen möglich, das zukünftig genutzt werden kann, um Reaktionsprozesse auf Quantenniveau zu steuern.

Einer deutsch-amerikanischen Forschergruppe ist es gelungen, chemische Prozesse mit einer nie dagewesenen Auflösung auf Quantenniveau zu vermessen. Dadurch...

Im Focus: Leoniden 2017: Sternschnuppen im Anflug?

Gemeinsame Pressemitteilung der Vereinigung der Sternfreunde und des Hauses der Astronomie in Heidelberg

Die Sternschnuppen der Leoniden sind in diesem Jahr gut zu beobachten, da kein Mondlicht stört. Experten sagen für die Nächte vom 16. auf den 17. und vom 17....

Im Focus: «Kosmische Schlange» lässt die Struktur von fernen Galaxien erkennen

Die Entstehung von Sternen in fernen Galaxien ist noch weitgehend unerforscht. Astronomen der Universität Genf konnten nun erstmals ein sechs Milliarden Lichtjahre entferntes Sternensystem genauer beobachten – und damit frühere Simulationen der Universität Zürich stützen. Ein spezieller Effekt ermöglicht mehrfach reflektierte Bilder, die sich wie eine Schlange durch den Kosmos ziehen.

Heute wissen Astronomen ziemlich genau, wie sich Sterne in der jüngsten kosmischen Vergangenheit gebildet haben. Aber gelten diese Gesetzmässigkeiten auch für...

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Pflanzenvielfalt von Wäldern aus der Luft abbilden

Produktivität und Stabilität von Waldökosystemen hängen stark von der funktionalen Vielfalt der Pflanzengemeinschaften ab. UZH-Forschenden gelang es, die Pflanzenvielfalt von Wäldern durch Fernerkundung mit Flugzeugen in verschiedenen Massstäben zu messen und zu kartieren – von einzelnen Bäumen bis hin zu ganzen Artengemeinschaften. Die neue Methode ebnet den Weg, um zukünftig die globale Pflanzendiversität aus der Luft und aus dem All zu überwachen.

Ökologische Studien zeigen, dass die Pflanzenvielfalt zentral ist für das Funktionieren von Ökosys-temen. Wälder mit einer höheren funktionalen Vielfalt –...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Technologievorsprung durch Textiltechnik

17.11.2017 | Veranstaltungen

Roboter für ein gesundes Altern: „European Robotics Week 2017“ an der Frankfurt UAS

17.11.2017 | Veranstaltungen

Börse für Zukunftstechnologien – Leichtbautag Stade bringt Unternehmen branchenübergreifend zusammen

17.11.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Technologievorsprung durch Textiltechnik

17.11.2017 | Veranstaltungsnachrichten

IHP präsentiert sich auf der productronica 2017

17.11.2017 | Messenachrichten

Roboter schafft den Salto rückwärts

17.11.2017 | Innovative Produkte