Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Extrem dicht – Annäherung an einen weitgehend unverstandenen Materiezustand

23.09.2015

Durchbruch in der Beschreibung der warmen dichten Materie

Ein Team vom Institut für Theoretische Physik und Astrophysik der Christian-Albrechts-Universität zu Kiel (CAU) unter der Leitung von Professor Michael Bonitz konnte aktuell neue Erkenntnisse über die sogenannte warme dichte Materie gewinnen.


Einige der Autoren vor einem Poster mit den wichtigsten Ergebnissen des neuen Konfigurations-Pfadintegral-Monte Carlo-Verfahrens, v.l.n.r. Prof. Michael Bonitz, Tim Schoof und Simon Groth. Foto: Dr. Hanno Kählert

Darunter versteht man in der Physik einen bislang weitgehend unverstandenen Materiezustand, der sich völlig von den auf der Erde bekannten festen, flüssigen, gasförmigen Aggregatzuständen oder Plasmen unterscheidet.

Die warme dichte Materie zeigt dabei in scheinbarem Widerspruch gleichzeitig Eigenschaften aller anderen Aggregatzustände. Die Kieler Wissenschaftler entwickelten nun ein neuartiges Simulationsverfahren, das die Ungenauigkeiten der bestehenden theoretischen Modelle, die diesen Materiezustand beschreiben, überwindet. Sie veröffentlichten ihre Forschungsergebnisse in der aktuellen Ausgabe der Fachzeitschrift Physical Review Letters.

Mit einer bis zu tausendfach höheren Dichte als gewöhnliche Festkörper ist warme dichte Materie extrem dicht. Sie existiert zum Beispiel als Folge der enormen Gravitation im Inneren von Zwergsternen. In Laborexperimenten lässt sich dieser Zustand unter dem Einfluss hochintensiver Laserstrahlung für kurze Zeiträume im Nano- bis Mikrosekundenbereich erzeugen.

Lange genug für Forschende in aller Welt, um experimentell oder in Computersimulationen Aussagen über den Materiezustand zu treffen. „Eine genaue Kenntnis der warmen dichten Materie ist der Schlüssel zur Beantwortung vieler astrophysikalischer Fragen. Sie hilft uns zum Beispiel dabei, das Alter von Galaxien zu bestimmen und ist auch für technologische Anwendungen wie etwa die Trägheitsfusion oder das Verständnis des Verhaltens von Materialien unter extremem Druck essentiell“, ordnet Bonitz die Bedeutung der Ergebnisse ein.

Bisherige theoretische Modelle konnten nur ungenaue Informationen über die Eigenschaften der warmen dichten Materie liefern. Grund dafür ist die besondere Komplexität des Zusammenspiels der Teilchen, insbesondere aber das Verhalten der beteiligten Elektronen. Sie beeinflussen sich gegenseitig stark und unterliegen zudem den Gesetzen der Quantenmechanik, so dass sie mit den bislang vorhandenen Modellen nicht zuverlässig zu beschreiben sind.

Dank der neuartigen Simulationsmethode ist es nun möglich, Ergebnisse von Experimenten besser zu verstehen und zuverlässige Vorhersagen für neue Messungen zu machen. Das Verfahren der Kieler Forschungsgruppe kommt dabei ohne die in theoretischen Modellen üblichen Vereinfachungen aus.

„Man kann es daher als ein Computerexperiment betrachten, das faktisch exakte Ergebnisse liefert“, so Bonitz weiter. Die nun an der CAU gewonnenen Erkenntnisse bilden die Grundlage für die Verbesserung bestehender und die Entwicklung neuer numerischer Verfahren, mit denen in Zukunft eine vollständige Beschreibung der warmen dichten Materie gelingen kann.

Originalpublikation:
Schoof, T., Groth, S., Vorberger, J. and M. Bonitz (2015): Ab Initio Thermodynamic Results for the Degenerate Electron Gas at Finite Temperature, Physical Review Letters 115.
Link: http://dx.doi.org/10.1103/PhysRevLett.115.130402


Kontakt:
Prof. Michael Bonitz
Institut für Theoretische Physik und Astrophysik,
Universität Kiel
Tel.: Tel.: 0431-880-4122
E-Mail: bonitz@theo-physik.uni-kiel.de

Weitere Informationen:
Arbeitsgruppe Bonitz, Institut für Theoretische Physik und Astrophysik:
http://www.theo-physik.uni-kiel.de/~bonitz/

Details, die nur Millionstel Millimeter groß sind: Damit beschäftigt sich der Forschungsschwerpunkt „Nanowissenschaften und Oberflächenforschung“ (Kiel Nano, Surface and Interface Science – KiNSIS) an der Christian-Albrechts-Universität zu Kiel (CAU). Im Nanokosmos herrschen andere, nämlich quantenphysikalische Gesetze als in der makroskopischen Welt. Durch eine intensive interdisziplinäre Zusammenarbeit zwischen Materialwissenschaft, Chemie, Physik, Biologie, Elektrotechnik, Informatik, Lebensmitteltechnologie und verschiedenen medizinischen Fächern zielt der Schwerpunkt darauf ab, die Systeme in dieser Dimension zu verstehen und die Erkenntnisse anwendungsbezogen umzusetzen. Molekulare Maschinen, neuartige Sensoren, bionische Materialien, Quantencomputer, fortschrittliche Therapien und vieles mehr können daraus entstehen. Mehr Informationen auf www.kinsis.uni-kiel.de

Christian-Albrechts-Universität zu Kiel
Presse, Kommunikation und Marketing, Dr. Boris Pawlowski, Text/Redaktion: Christian Urban
Postanschrift: D-24098 Kiel, Telefon: (0431) 880-2104, Telefax: (0431) 880-1355
E-Mail: presse@uv.uni-kiel.de, Internet: www.uni-kiel.de, Jubiläum: www.uni-kiel.de/cau350
Twitter: www.twitter.com/kieluni , Facebook: www.facebook.com/kieluni     

Dr. Boris Pawlowski | Christian-Albrechts-Universität zu Kiel

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht ALMA beginnt Beobachtung der Sonne
18.01.2017 | ESO Science Outreach Network - Haus der Astronomie

nachricht Magnetische Kraft von einzelnen Antiprotonen mit höchster Genauigkeit bestimmt
18.01.2017 | Max-Planck-Institut für Kernphysik

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Textiler Hochwasserschutz erhöht Sicherheit

Wissenschaftler der TU Chemnitz präsentieren im Februar und März 2017 ein neues temporäres System zum Schutz gegen Hochwasser auf Baumessen in Chemnitz und Dresden

Auch die jüngsten Hochwasserereignisse zeigen, dass vielerorts das natürliche Rückhaltepotential von Uferbereichen schnell erschöpft ist und angrenzende...

Im Focus: Wie Darmbakterien krank machen

HZI-Forscher entschlüsseln Infektionsmechanismen von Yersinien und Immunantworten des Wirts

Yersinien verursachen schwere Darminfektionen. Um ihre Infektionsmechanismen besser zu verstehen, werden Studien mit dem Modellorganismus Yersinia...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Erforschung von Elementarteilchen in Materialien

Laseranregung von Semimetallen ermöglicht die Erzeugung neuartiger Quasiteilchen in Festkörpersystemen sowie ultraschnelle Schaltung zwischen verschiedenen Zuständen.

Die Untersuchung der Eigenschaften fundamentaler Teilchen in Festkörpersystemen ist ein vielversprechender Ansatz für die Quantenfeldtheorie. Quasiteilchen...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Künftige Rohstoffexperten aus aller Welt in Freiberg zur Winterschule

18.01.2017 | Veranstaltungen

Bundesweiter Astronomietag am 25. März 2017

17.01.2017 | Veranstaltungen

Über intelligente IT-Systeme und große Datenberge

17.01.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Der erste Blick auf ein einzelnes Protein

18.01.2017 | Biowissenschaften Chemie

Das menschliche Hirn wächst länger und funktionsspezifischer als gedacht

18.01.2017 | Biowissenschaften Chemie

Zur Sicherheit: Rettungsautos unterbrechen Radio

18.01.2017 | Verkehr Logistik