Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Exotische Quantenzustände: Physiker erzeugen erstmals optische „Töpfe" für ein Super-Photon

15.08.2017

Physikern der Universität Bonn ist es gelungen, optische Mulden und komplexere Muster zu erzeugen, in die das Licht eines Bose-Einstein-Kondensates fließt. Die Herstellung solch sehr verlustarmer Strukturen für Licht ist eine Voraussetzung für komplexe Schaltkreise für Licht, beispielsweise für die Quanteninformationsverarbeitung einer neuen Computergeneration. Die Wissenschaftler stellen nun ihre Ergebnisse im Fachjournal „Nature Photonics“ vor.

Lichtteilchen (Photonen) kommen als winzige, unteilbare Portionen vor. Viele Tausend dieser Licht-Portionen lassen sich zu einem einzigen Super-Photon verschmelzen, wenn man sie genügend konzentriert und abkühlt.


Potential wells The artist's rendering shows how potential wells are created for the light in the microresonator through heating with an external laser beam (green).

© Foto: David Dung/Uni Bonn


The Bonn researchers (from left) Dr. Tobias Damm, Dr. Frank Vewinger, David Dung und Prof. Dr. Martin Weitz.

Foto: Volker Lannert/Uni Bonn

Die einzelnen Teilchen verschmelzen auf eine Weise miteinander, dass sie sich gar nicht mehr voneinander unterscheiden lassen. Wissenschaftler sprechen von einem photonischen Bose-Einstein-Kondensat. Dass normale Atome solche Kondensate bilden, ist schon länger bekannt.

Prof. Dr. Martin Weitz vom Institut für Angewandte Physik der Universität Bonn sorgte im Jahr 2010 in der Fachwelt für Aufsehen, als er erstmals ein Bose-Einstein-Kondensat aus Photonen herstellte.

In seiner aktuellen Studie experimentierte das Team von Prof. Weitz wiederum mit einem solchen Superphoton. In der Versuchsanordnung wurde ein Laserstrahl blitzschnell zwischen zwei Spiegeln hin- und hergeworfen.

Dazwischen befand sich ein Farbstoff, der das Laserlicht soweit herunterkühlte, dass aus den einzelnen Licht-Portionen ein Superphoton entstand. „Die Besonderheit ist, dass wir eine Art optischer Töpfchen in unterschiedlichen Formen gebaut haben, in die das Bose-Einstein-Kondensat hineinfließen konnte“, berichtet Weitz.

Ein Polymer variiert den Lichtweg

Hierfür nutzte das Forscherteam einen Trick: Es mischte dem Farbstoff zwischen den Spiegeln ein Polymer bei, das seinen Brechungsindex in Abhängigkeit von der Temperatur änderte. So änderte sich für das Licht die Wegstrecke zwischen den Spiegeln, so dass bei Aufheizung längere Lichtwellenlängen zwischen die Spiegel passten. Das Ausmaß des Lichtwegs zwischen den Spiegeln ließ sich variieren, indem das Polymer über eine hauchdünne Heizschicht aufgewärmt werden konnte.

„Mit Hilfe unterschiedlicher Temperaturen konnten wir unterschiedliche optische Eindellungen erzeugen“, erläutert Weitz. Dabei verformte sich die Geometrie des Spiegels nur scheinbar, es kam vielmehr an einer bestimmten Stelle zur Änderung des Brechungsindex des Polymers – dies hatte aber die gleiche Wirkung wie eine Hohlform. In dieses scheinbare Töpfchen floss ein Teil des Superphotons hinein. Auf diese Weise konnten die Wissenschaftler mit ihrer Apparatur unterschiedliche, sehr verlustarme, Muster erzeugen, die das photonische Bose-Einstein-Kondensat einfingen.

Vorstufe von Quantenschaltkreisen

Im Detail untersuchte das Forscherteam, gesteuert über die Temperatur des Polymers, die Ausbildung zweier benachbarter Töpfchen. Wenn das Licht in beiden optischen Hohlformen auf einem ähnlichen Energieniveau verharrte, floss das Superphoton von dem einen Töpfchen in das benachbarte.

„Es handelte sich dabei um eine Vorstufe für optische Quantenschaltkreise“, hebt der Physiker der Universität Bonn hervor. „Vielleicht lassen sich mit diesem Versuchsaufbau auch komplexe Anordnungen herstellen, bei denen es im Zusammenspiel mit einer in geeigneten Materialien möglichen Photonenwechselwirkung zu einer Quantenverschränkung kommt.“

Dies wäre wiederum die Voraussetzung für ein neues Verfahren der Quantenkommunikation und Quantencomputer. „Doch das ist noch Zukunftsmusik“, sagt Weitz. Die Erkenntnisse des Forscherteams lassen sich absehbar auch für die Weiterentwicklung von Lasern – zum Beispiel für hochpräzise Schweißarbeiten – nutzen.

Publikation: David Dung, Christian Kurtscheid, Tobias Damm, Julian Schmitt, Frank Vewinger, Martin Weitz & Jan Klärs: Variable Potentials for Thermalized Light and Coupled Condensates, Nature Photonics, DOI: 10.1038/nphoton.2017.139

Kontakt für die Medien:

David Dung
Institut für Angewandte Physik
Universität Bonn
Tel. 0228/733453 oder 733455
E-Mail: dung@iap.uni-bonn.de

Prof. Dr. Martin Weitz (erreichbar ab 21.08.2017)
Institut für Angewandte Physik
Universität Bonn
Tel. 0228/734837 oder 734836
E-Mail: weitz@uni-bonn.de

Dr. Andreas Archut | idw - Informationsdienst Wissenschaft
Weitere Informationen:
http://www.uni-bonn.de/

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Countdown für Kilogramm, Kelvin und Co.
18.05.2018 | Physikalisch-Technische Bundesanstalt (PTB)

nachricht Bose-Einstein-Kondensat im Riesenatom - Universität Stuttgart untersucht exotisches Quantenobjekt
18.05.2018 | Universität Stuttgart

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Bose-Einstein-Kondensat im Riesenatom - Universität Stuttgart untersucht exotisches Quantenobjekt

Passt eine ultrakalte Wolke aus zehntausenden Rubidium-Atomen in ein einzelnes Riesenatom? Forscherinnen und Forschern am 5. Physikalischen Institut der Universität Stuttgart ist dies erstmals gelungen. Sie zeigten einen ganz neuen Ansatz, die Wechselwirkung von geladenen Kernen mit neutralen Atomen bei weitaus niedrigeren Temperaturen zu untersuchen, als es bisher möglich war. Dies könnte einen wichtigen Schritt darstellen, um in Zukunft quantenmechanische Effekte in der Atom-Ion Wechselwirkung zu studieren. Das renommierte Fachjournal Physical Review Letters und das populärwissenschaftliche Begleitjournal Physics berichteten darüber.*)

In dem Experiment regten die Forscherinnen und Forscher ein Elektron eines einzelnen Atoms in einem Bose-Einstein-Kondensat mit Laserstrahlen in einen riesigen...

Im Focus: Algorithmen für die Leberchirurgie – weltweit sicherer operieren

Die Leber durchlaufen vier komplex verwobene Gefäßsysteme. Die chirurgische Entfernung von Tumoren ist daher oft eine schwierige Aufgabe. Das Fraunhofer-Institut für Bildgestützte Medizin MEVIS hat Algorithmen entwickelt, die die Bilddaten von Patienten analysieren und chirurgische Risiken berechnen. Leberkrebsoperationen werden damit besser planbar und sicherer.

Jährlich erkranken weltweit 750.000 Menschen neu an Leberkrebs, viele weitere entwickeln Lebermetastasen aufgrund anderer Krebserkrankungen. Ein chirurgischer...

Im Focus: Positronen leuchten besser

Leuchtstoffe werden schon lange benutzt, im Alltag zum Beispiel im Bildschirm von Fernsehgeräten oder in PC-Monitoren, in der Wissenschaft zum Untersuchen von Plasmen, Teilchen- oder Antiteilchenstrahlen. Gleich ob Teilchen oder Antiteilchen – treffen sie auf einen Leuchtstoff auf, regen sie ihn zum Lumineszieren an. Unbekannt war jedoch bisher, dass die Lichtausbeute mit Elektronen wesentlich niedriger ist als mit Positronen, ihren Antiteilchen. Dies hat Dr. Eve Stenson im Max-Planck-Institut für Plasmaphysik (IPP) in Garching und Greifswald jetzt beim Vorbereiten von Experimenten mit Materie-Antimaterie-Plasmen entdeckt.

„Wäre Antimaterie nicht so schwierig herzustellen, könnte man auf eine Ära hochleuchtender Niederspannungs-Displays hoffen, in der die Leuchtschirme nicht von...

Im Focus: Erklärung für rätselhafte Quantenoszillationen gefunden

Sogenannte Quanten-Vielteilchen-„Scars“ lassen Quantensysteme länger außerhalb des Gleichgewichtszustandes verweilen. Studie wurde in Nature Physics veröffentlicht

Forschern der Harvard Universität und des MIT war es vor kurzem gelungen, eine Rekordzahl von 53 Atomen einzufangen und ihren Quantenzustand einzeln zu...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

„Data Science“ – Theorie und Anwendung: Internationale Tagung unter Leitung der Uni Paderborn

18.05.2018 | Veranstaltungen

Visual-Computing an Bord der MS Wissenschaft

17.05.2018 | Veranstaltungen

Tagung »Anlagenbau und -betrieb der Zukunft«

17.05.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Bose-Einstein-Kondensat im Riesenatom - Universität Stuttgart untersucht exotisches Quantenobjekt

18.05.2018 | Physik Astronomie

Countdown für Kilogramm, Kelvin und Co.

18.05.2018 | Physik Astronomie

Wie Immunzellen Bakterien mit Säure töten

18.05.2018 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics