Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Exotische Quantenzustände: Neuer Forschungsansatz

03.10.2011
Ein neues Konzept zur Erzeugung exotischer, sogenannter topologischer Quantenzustände in Vielteilchensystemen schlagen Theoretiker der Universität Innsbruck in der Fachzeitschrift Nature Physics vor.

Sie verbinden Ideen aus der Quantenoptik mit Konzepten der Festkörperphysik und liefern damit einen neuen Ansatz für den Bau eines störungsunempfindlichen Quantencomputers.


Einzelne, nebeneinander aufgereiht Atome bilden einen Quantendraht. Die Majorana-Fermionen werden an den beiden Enden der Kette erzeugt. Grafik: H. Ritsch

Vor drei Jahren hat ein Team um Sebastian Diehl und Peter Zoller einen ganz neuen Weg zur Herstellung von Quantenzuständen in Vielteilchensystemen präsentiert. Sie bedienten sich dazu eines physikalisches Phänomens, das normalerweise den Grad der Unordnung in einem System dramatisch erhöht: Dissipation.

In der klassischen Physik beschreibt Dissipation beispielsweise die Bildung von Wärmeenergie durch Reibung, sie bringt also Unordnung in ein System. Überraschender Weise lässt sich in der Quantenwelt damit auch Ordnung herstellen und ein perfekt reiner Vielteilchenzustand erzeugen. Im Frühjahr haben Experimentalphysiker um Rainer Blatt im Labor in Innsbruck gezeigt, dass sich mit diesem Ansatz bestimmte Quanteneffekte gezielt erzeugen und verstärken lassen. Nun machen die Theoretiker des Instituts für Theoretische Physik der Universität Innsbruck und des Instituts für Quantenoptik und Quanteninformation (IQOQI) der Österreichischen Akademie der Wissenschaften einen neuen Vorschlag, wie Dissipation vielversprechend eingesetzt werden könnte. Sie schlagen dabei eine Brücke von der Quantenoptik zur Festkörperphysik.

Gegenüber Störungen unempfindlich
In der Festkörperphysik gewinnt in jüngster Zeit ein neues Paradigma für die Beschreibung von Ordnung in Vielteilchensystemen zunehmend an Bedeutung: die topologische Ordnung. Beispiele für topologische Phänomene sind der in den 1980er-Jahren nachgewiesene Quanten-Hall-Effekt sowie topologische Isolatoren, die sich im Inneren als elektrischer Isolator verhalten während sie gleichzeitig auf ihrer Oberfläche die Bewegung von Ladungen erlauben.

Die Innsbrucker Theoretiker um Sebastian Diehl und Peter Zoller schlagen nun vor, mit einer dissipativen Dynamik in einem Quantensystem sogenannte Majorana-Fermionen zu erzeugen. Dieses nach dem italienischen Physiker Ettore Majorana benannte topologische Phänomen beschreibt Teilchen, die gleichzeitig ihre eigenen Antiteilchen sind.

„Wir zeigen nun einen neuen Weg auf, wie solche Majorana-Fermionen in einem Quantensystem gezielt erzeugt werden können“,erklärt Sebastian Diehl, „und nutzen dazu eine dissipative Dynamik, die das System gerichtet in diesen Zustand treibt und bei jeder Störung wieder dahin zurückzwingt.“ Durch diesen Ansatz verbinden Diehl und sein Team die Vorteile der Dissipation mit jenen der topologischen Ordnung, denn beide Ansätze zeichnen sich durch hohe Robustheit gegenüber kleinen Störungen aus.

Ihr Vorschlag, in einem atomaren Quantendraht Majorana-Fermionen mittels Dissipation zu erzeugen, ist deshalb für die experimentelle Umsetzung von besonderem Interesse und könnte beim Bau eines zukünftigen Quantencomputers zum Einsatz kommen, bei denen die elementaren Recheneinheiten aus den Majorana-Fermionen bestehen. In den Quantendrähten sind einzelne Atome nebeneinander aufgereiht und werden von einem mit Laserlicht erzeugten optischen Gitter daran gehindert, aus der Reihe zu tanzen. Die Majorana-Fermionen werden an den beiden Enden der atomaren Kette erzeugt.

Checkliste abgearbeitet

START-Preisträger Sebastian Diehl und sein Team verbinden in diesem Konzept das Wissen der Festkörperphysik mit jenem der Quantentheorie. „Wir arbeiten hier an der Schnittstelle zwischen diesen beiden Disziplinen, was aufregende neue Möglichkeiten schafft“, sagt Diehl. Dazu war es notwendig, zweifelsfrei nachzuweisen, dass sich das Konzept der topologische Ordnung überhaupt auf den dissipativen Kontext übertragen lässt. „Wir haben die vollständige topologische Checkliste abgearbeitet und gezeigt, dass deren Voraussetzungen auch in einem System mit dissipativer Dynamik gelten.“ Den mathematischen Nachweis haben die Physiker nun in der Fachzeitschrift Nature Physics veröffentlicht.

Publikation: Topology by Dissipation in Atomic Quantum Wires. S. Diehl, E. Rico, M. A. Baranov, P. Zoller. Nature Physics. 2. Oktober 2011 DOI: 10.1038/nphys2106

Dr. Christian Flatz | Universität Innsbruck
Weitere Informationen:
http://www.uibk.ac.at/th-physik/qo/

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Atome rennen sehen - Phasenübergang live beobachtet
30.03.2017 | Universität Duisburg-Essen

nachricht Flipper auf atomarem Niveau
30.03.2017 | Max-Planck-Institut für Struktur und Dynamik der Materie

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Atome rennen sehen - Phasenübergang live beobachtet

Ein Wimpernschlag ist unendlich lang dagegen – innerhalb von 350 Billiardsteln einer Sekunde arrangieren sich die Atome neu. Das renommierte Fachmagazin Nature berichtet in seiner aktuellen Ausgabe*: Wissenschaftler vom Center for Nanointegration (CENIDE) der Universität Duisburg-Essen (UDE) haben die Bewegungen eines eindimensionalen Materials erstmals live verfolgen können. Dazu arbeiteten sie mit Kollegen der Universität Paderborn zusammen. Die Forscher fanden heraus, dass die Beschleunigung der Atome jeden Porsche stehenlässt.

Egal wie klein sie sind, die uns im Alltag umgebenden Dinge sind dreidimensional: Salzkristalle, Pollen, Staub. Selbst Alufolie hat eine gewisse Dicke. Das...

Im Focus: Kleinstmagnete für zukünftige Datenspeicher

Ein internationales Forscherteam unter der Leitung von Chemikern der ETH Zürich hat eine neue Methode entwickelt, um eine Oberfläche mit einzelnen magnetisierbaren Atomen zu bestücken. Interessant ist dies insbesondere für die Entwicklung neuartiger winziger Datenträger.

Die Idee ist faszinierend: Auf kleinstem Platz könnten riesige Datenmengen gespeichert werden, wenn man für eine Informationseinheit (in der binären...

Im Focus: Quantenkommunikation: Wie man das Rauschen überlistet

Wie kann man Quanteninformation zuverlässig übertragen, wenn man in der Verbindungsleitung mit störendem Rauschen zu kämpfen hat? Uni Innsbruck und TU Wien präsentieren neue Lösungen.

Wir kommunizieren heute mit Hilfe von Funksignalen, wir schicken elektrische Impulse durch lange Leitungen – doch das könnte sich bald ändern. Derzeit wird...

Im Focus: Entwicklung miniaturisierter Lichtmikroskope - „ChipScope“ will ins Innere lebender Zellen blicken

Das Institut für Halbleitertechnik und das Institut für Physikalische und Theoretische Chemie, beide Mitglieder des Laboratory for Emerging Nanometrology (LENA), der Technischen Universität Braunschweig, sind Partner des kürzlich gestarteten EU-Forschungsprojektes ChipScope. Ziel ist es, ein neues, extrem kleines Lichtmikroskop zu entwickeln. Damit soll das Innere lebender Zellen in Echtzeit beobachtet werden können. Sieben Institute in fünf europäischen Ländern beteiligen sich über die nächsten vier Jahre an diesem technologisch anspruchsvollen Projekt.

Die zukünftigen Einsatzmöglichkeiten des neu zu entwickelnden und nur wenige Millimeter großen Mikroskops sind äußerst vielfältig. Die Projektpartner haben...

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Industriearbeitskreis »Prozesskontrolle in der Lasermaterialbearbeitung ICPC« lädt nach Aachen ein

28.03.2017 | Veranstaltungen

Neue Methoden für zuverlässige Mikroelektronik: Internationale Experten treffen sich in Halle

28.03.2017 | Veranstaltungen

Wie Menschen wachsen

27.03.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Nierentransplantationen: Weisse Blutzellen kontrollieren Virusvermehrung

30.03.2017 | Biowissenschaften Chemie

Zuckerrübenschnitzel: der neue Rohstoff für Werkstoffe?

30.03.2017 | Materialwissenschaften

Integrating Light – Your Partner LZH: Das LZH auf der Hannover Messe 2017

30.03.2017 | HANNOVER MESSE