Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

„Event Horizon Teleskop“ vermisst Schwarzes Loch

11.04.2017

Das internationale „Event Horizon Teleskop“-Konsortium, das zurzeit erstmalig versucht, das vermutete Schwarze Loch im Zentrum unserer Milchstraße zu vermessen, hat einen Schwerpunkt in Deutschland, und die Arbeitsgruppe von Prof. Luciano Rezzolla am Institut für Theoretische Physik der Goethe-Universität ist maßgeblich daran beteiligt. Einen Großteil des erforderlichen Netzes aus Radioteleskopen gehört zur „BlackHoleCam“, ein 2013 von einem deutsch-niederländischen Team eingeworbenen Experiment, unter Mitwirkung des Rezzolla-Teams. Die „BlackHoleCam“ wird vom Europäischen Forschungsrat im Rahmen eines „ERC Synergy Grant“ mit 14 Millionen Euro gefördert.

Durch den starken Sog der Schwerkraft kann selbst Licht einem Schwarzen Loch nicht entkommen, weshalb seine Oberfläche, der sogenannte Ereignishorizont (engl. „Event Horizon“), nicht direkt beobachtet werden kann. Die Grenze zwischen den Licht-Teilchen, die sich dem Sog entziehen können, und denen, die vom Schwarzen Loch gefangen werden, wird als „Schatten“ des Schwarzen Lochs bezeichnet, da diese Grenze wie ein Schatten gegenüber dem hell erleuchteten Hintergrund erscheint.


Quelle: Uni Frankfurt

Diesen Schatten wollen die Forscher zurzeit mit einer Serie von Beobachtungen von Sagittarius A*, wie das potenzielle Schwarzen Lochs in unserer Milchstraße bezeichnet wird, detektieren. Während der Beobachtung analysieren die Wissenschaftler Radiostrahlung, die von Sagittarius A* ausgestrahlt wird.

Sagittarius A* ist ein Koloss mit der Masse von 4.5 Millionen Sonnenmassen und sein Schatten ist ungefähr so breit wie die halbe Strecke zwischen der Sonne und der Erde (75 Millionen Kilometer).

Die große Entfernung zwischen der Erde und Sagittarius A* von etwa 26.000 Lichtjahren führt zu einer sehr geringen Winkelausdehnung, weshalb der Schatten trotz der enormen Masse, als klein erscheint. Ihn auszumessen ist etwa so, als wolle man einen Apfel auf der Mondoberfläche beobachten.

Um den Schatten des Schwarzen Loches messen zu können, werden Radioteleskope rund um den Globus zu einem virtuellen Teleskop mit dem Durchmesser der Erde zusammengeschaltet. Diese Art der koordinierten Beobachtung wird als Interferometrie mit langen Basislinien („Very Long Baseline Interferometry“, VLBI) bezeichnet.

Die Forschung von BlackHoleCam unter der Leitung von Prof. Luciano Rezzolla (Goethe-Universität), Prof. Michael Kramer (Max Planck Institut für Radioastronomie, Bonn) und Prof. Heino Falcke (Radboud-Universität Nimwegen, Niederlande) leistet einen wichtigen Beitrag zum EHT-Experiment. An den aktuellen Messungen beteiligt sich ein Netzwerk von Teleskopen aus Europa, den USA, Mittel- und Südamerika und das Südpolteleskop, die simultan Sagittarius A* beobachten.

Während der Beobachtungen zeichnen die einzelnen Teleskope des Netzwerks die Messungen auf Festplatten auf und im Anschluss werden die Festplatten aller Teleskope zu einem der Auswertungszentren in den USA und in Bonn geschickt. Dort werden die einzelnen Daten an einem Großrechner (Korrelator) zu einer einzigen Messung numerisch zusammengesetzt und durch die Anwendung moderner Bildverarbeitungssoftware kann der Schatten des Schwarzen Loches aus der Messung rekonstruiert werden.

Die Abbildung des Schattens ist der Ausgangspunkt für die theoretische Forschung der Arbeitsgruppe von Prof. Rezzolla. Neben der theoretischen Vorhersage welche Art von Beobachtung zu erwarten ist, arbeitet die Gruppe in Frankfurt auch daran, zu ermitteln, ob die Allgemein Relativitätstheorie Einsteins die Wahre ist. Neben der allgemeinen Relativitätstheorie Einsteins existieren nämlich weitere Gravitationstheorien; die aktuellen Beobachtungen können helfen, die Richtige herauszufinden. Hierfür analysieren die Forscher die Ausdehnung und die Geometrie des Schattens und vergleichen diese mit den am Großrechner erzeugten synthetischen Bildern, die das Ansaugen von Masse eines Schwarzen Loches simulieren.

Die synthetischen Bilder erzeugen die Astrophysiker, indem sie die Gleichungen der relativistischen Magnetohydrodynamik lösen und die Bahnen berechnen, auf denen sich die Photonen um das Schwarze Loch bewegen. Hierzu benutzen die Forscher spezielle Computercodes, die in der Gruppe von Prof. Rezzolla entwickelt werden. So entstehen realistische Abbildungen vom Schatten des Schwarzen Lochs auf der Basis unterschiedlicher Gravitationstheorien, die mit den Beobachtungen verglichen werden können. Auf diese Weise tragen sie dazu bei, das komplizierte Puzzle der Gravitation zu lösen.

Dazu Prof. Rezzolla: „Die derzeitigen Messungen stellen einen entscheiden Schritt in den internationalen Bemühungen zur Erforschung des dunklen und kompakten Objekts im Zentrum unserer Galaxie dar. Jedoch ist dies nur ein erster Schritt, und es ist sehr wahrscheinlich, dass diesem weitere Beobachtungen mit verbesserter Genauigkeit folgen müssen um diese grundlegende Fragestellung zu klären.“

Informationen: Prof. Luciano Rezzolla, Institut für Theoretische Physik, Fachbereich 13, Campus Riedberg, (069)-798-47871; rezzolla@th.physik.uni-frankfurt.de.

Ulrike Jaspers | idw - Informationsdienst Wissenschaft
Weitere Informationen:
http://www.uni-frankfurt.de

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Kleinste Teilchen aus fernen Galaxien!
22.09.2017 | Bergische Universität Wuppertal

nachricht Tanzende Elektronen verlieren das Rennen
22.09.2017 | Universität Bielefeld

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Hochpräzise Verschaltung in der Hirnrinde

Es ist noch immer weitgehend unbekannt, wie die komplexen neuronalen Netzwerke im Gehirn aufgebaut sind. Insbesondere in der Hirnrinde der Säugetiere, wo Sehen, Denken und Orientierung berechnet werden, sind die Regeln, nach denen die Nervenzellen miteinander verschaltet sind, nur unzureichend erforscht. Wissenschaftler um Moritz Helmstaedter vom Max-Planck-Institut für Hirnforschung in Frankfurt am Main und Helene Schmidt vom Bernstein-Zentrum der Humboldt-Universität in Berlin haben nun in dem Teil der Großhirnrinde, der für die räumliche Orientierung zuständig ist, ein überraschend präzises Verschaltungsmuster der Nervenzellen entdeckt.

Wie die Forscher in Nature berichten (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005), haben die...

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Wundermaterial Graphen: Gewölbt wie das Polster eines Chesterfield-Sofas

Graphen besitzt extreme Eigenschaften und ist vielseitig verwendbar. Mit einem Trick lassen sich sogar die Spins im Graphen kontrollieren. Dies gelang einem HZB-Team schon vor einiger Zeit: Die Physiker haben dafür eine Lage Graphen auf einem Nickelsubstrat aufgebracht und Goldatome dazwischen eingeschleust. Im Fachblatt 2D Materials zeigen sie nun, warum dies sich derartig stark auf die Spins auswirkt. Graphen kommt so auch als Material für künftige Informationstechnologien infrage, die auf der Verarbeitung von Spins als Informationseinheiten basieren.

Graphen ist wohl die exotischste Form von Kohlenstoff: Alle Atome sind untereinander nur in der Ebene verbunden und bilden ein Netz mit sechseckigen Maschen,...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

11. BusinessForum21-Kongress „Aktives Schadenmanagement"

22.09.2017 | Veranstaltungen

Internationale Konferenz zum Biomining ab Sonntag in Freiberg

22.09.2017 | Veranstaltungen

Die Erde und ihre Bestandteile im Fokus

21.09.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

11. BusinessForum21-Kongress „Aktives Schadenmanagement"

22.09.2017 | Veranstaltungsnachrichten

DFG bewilligt drei neue Forschergruppen und eine neue Klinische Forschergruppe

22.09.2017 | Förderungen Preise

Lebendiges Gewebe aus dem Drucker

22.09.2017 | Biowissenschaften Chemie