Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

EU-Projekt IFOX startet - Neue Materialien für leistungsfähige Chips

06.12.2010
Wissenschaftler aus Halle gestalten gemeinsam mit 15 europäischen Partnern im EU-Projekt „Interfacing Oxides“ (IFOX) die Grundlagen für die zukünftige oxidbasierte Nanoelektronik. Die Europäische Union fördert das jüngst gestartete Projekt IFOX mit 11,3 Millionen Euro über einen Zeitraum von vier Jahren.

Elektronische und magnetische Effekte im Nanometerbereich an Grenzflächen von komplexen Übergangsmetalloxiden aufzuspüren, zu untersuchen und für zukünftige oxidbasierte Nanoelektronik nutzbar zu machen ist das Ziel des EU-Projekts „Interfacing Oxides" (IFOX).

Damit wird eine Plattform geschaffen, auf der elektronische Bauteile mit neuartigen Funktionalitäten entwickelt werden können. Im IFOX-Konsortium haben sich führende Labors auf den Gebieten Oxidschichtherstellung, -charakterisierung und -strukturierung sowie Theorie aus 16 europäischen Forschungseinrichtungen und Industrieunternehmen für die nächsten vier Jahre zusammengetan.

Prof. Dr. Georg Schmidt von der Martin-Luther-Universität Halle-Wittenberg (MLU) erläutert die Notwendigkeit des Projekts: „Die etablierten Technologien der Mikroelektronik speziell für die Informationsverarbeitung und -speicherung basieren momentan auf der immer weiteren Verkleinerung der siliziumbasierten CMOS-Technologie. Nach Moore's Gesetz sollte diese Verkleinerung alle zwei Jahre eine Verdoppelung der Leistungsfähigkeit mit sich bringen. Aber schon heute gibt es dabei technologische Grenzen und die Entwicklung geht immer langsamer vor sich."

Um die bisherige Leistungssteigerung der Chips nach dem Mooreschen Gesetz (Leistungsverdopplung innerhalb von 24 Monaten) fortzuschreiben, sind deshalb neuartige Chiparchitekturen und entsprechende Materialien notwendig. Mit IFOX soll die experimentelle und theoretische Basis geschaffen werden, um besonders vielversprechende Materialkombinationen aufzuspüren sowie Effekte an deren Grenzflächen zu verstehen. Außerdem gilt es, diese komplexen Schichtsysteme mit extrem guter Kristallqualität auf kommerziell erhältlichen Substratmaterialien - vor allem Silizium - herzustellen, zu Bauelementen zu strukturieren und hinsichtlich ihrer strukturellen, elektronischen und magnetischen Eigenschaften zu charakterisieren.

Im Mittelpunkt stehen vor allem die Grenzflächen zwischen verschiedenen Materialien, die für diese neuen Funktionen von großer Bedeutung sind und die im Rahmen des Projektes optimiert und bis hinunter zur Betrachtung einzelner Atome untersucht werden. Das Ziel sind Anwendungen für Logik, Speicher und Sensoren.

Das Projekt steht unter der Wissenschaftlichen Leitung von Prof. Dr. Georg Schmidt von der MLU. Hierbei tragen Forscherinnen und Forscher des Instituts für Physik und des interdisziplinären Zentrums für Materialwissenschaften maßgeblich zur Prozessentwicklung für die oxidische Nanoelektronik und die Bestimmung der elektronischen und magnetischen Eigenschaften bei. Die Wissenschaftler arbeiten eng mit dem ebenfalls beteiligten Max-Planck-Institut für Mikrostrukturphysik Halle zusammen. Die MLU ist dabei sehr gut aufgestellt, da eine eng verwandte Thematik im Sonderforschungsbereich 762 bereits seit mehreren Jahren behandelt wird.

Ansprechpartner zu dieser Pressemitteilung:

Prof. Dr. Georg Schmidt
Fachgruppenleiter Nanostrukturierte Materialien
Telefon: 0345 55 25320
Email: georg.schmidt@physik.uni-halle.de

Ulf Walther | idw
Weitere Informationen:
http://www.ifox-project.eu/index.php?idm=0

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Der überraschend schnelle Fall des Felix Baumgartner
14.12.2017 | Technische Universität München

nachricht Eine blühende Sternentstehungsregion
14.12.2017 | ESO Science Outreach Network - Haus der Astronomie

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Nanostrukturen steuern Wärmetransport: Bayreuther Forscher entdecken Verfahren zur Wärmeregulierung

Der Forschergruppe von Prof. Dr. Markus Retsch an der Universität Bayreuth ist es erstmals gelungen, die von der Temperatur abhängige Wärmeleitfähigkeit mit Hilfe von polymeren Materialien präzise zu steuern. In der Zeitschrift Science Advances werden diese fortschrittlichen, zunächst für Laboruntersuchungen hergestellten Funktionsmaterialien beschrieben. Die hiermit gewonnenen Erkenntnisse sind von großer Relevanz für die Entwicklung neuer Konzepte zur Wärmedämmung.

Von Schmetterlingsflügeln zu neuen Funktionsmaterialien

Im Focus: Lange Speicherung photonischer Quantenbits für globale Teleportation

Wissenschaftler am Max-Planck-Institut für Quantenoptik erreichen mit neuer Speichertechnik für photonische Quantenbits Kohärenzzeiten, welche die weltweite...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Neue Einblicke in die Materie: Hochdruckforschung in Kombination mit NMR-Spektroskopie

Forschern der Universität Bayreuth und des Karlsruhe Institute of Technology (KIT) ist es erstmals gelungen, die magnetische Kernresonanzspektroskopie (NMR) in Experimenten anzuwenden, bei denen Materialproben unter sehr hohen Drücken – ähnlich denen im unteren Erdmantel – analysiert werden. Das in der Zeitschrift Science Advances vorgestellte Verfahren verspricht neue Erkenntnisse über Elementarteilchen, die sich unter hohen Drücken oft anders verhalten als unter Normalbedingungen. Es wird voraussichtlich technologische Innovationen fördern, aber auch neue Einblicke in das Erdinnere und die Erdgeschichte, insbesondere die Bedingungen für die Entstehung von Leben, ermöglichen.

Diamanten setzen Materie unter Hochdruck

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Mit allen Sinnen! - Sensoren im Automobil

14.12.2017 | Veranstaltungen

Materialinnovationen 2018 – Werkstoff- und Materialforschungskonferenz des BMBF

13.12.2017 | Veranstaltungen

Innovativer Wasserbau im 21. Jahrhundert

13.12.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Was für IT-Manager jetzt wichtig ist

14.12.2017 | Unternehmensmeldung

30 Baufritz-Läufer beim 25. Erkheimer Nikolaus-Straßenlauf

14.12.2017 | Unternehmensmeldung

Mit allen Sinnen! - Sensoren im Automobil

14.12.2017 | Veranstaltungsnachrichten